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Robust optimization is a popular paradigm for modeling and solving two- and multi-stage decision-making
problems affected by uncertainty. Most approaches assume that the uncertain parameters can be observed
for free and that the sequence in which they are revealed is independent of the decision-maker’s actions. Yet,
these assumptions fail to hold in many real-world applications where the time of information discovery is
decision-dependent and the uncertain parameters only become observable after an often costly investment.
To fill this gap, we consider two- and multi-stage robust optimization problems in which part of the decision
variables control the time of information discovery. Thus, information available at any given time is decision-
dependent and can be discovered (at least in part) by making strategic exploratory investments in previous
stages. We propose a novel dynamic formulation of the problem and prove its correctness. We leverage our
model to provide a solution method inspired from the K-adaptability approximation, whereby K candidate
strategies for each decision stage are chosen here-and-now and, at the beginning of each period, the best of
these strategies is selected after the uncertain parameters that were chosen to be observed are revealed. We
reformulate the problem as a mixed-binary linear program solvable with off-the-shelf solvers. We generalize
our approach to the minimization of piecewise linear convex functions. We demonstrate effectiveness of our
approach on synthetic and real data instances of the active preference elicitation problem used to recommend

policies that meet the needs of policy-makers at the Los Angeles Homeless Services Authority.
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1. Introduction

1.1. Background & Motivation

Over the last two decades, robust optimization (RO) has emerged as a popular approach for decision-making
under uncertainty in single-stage settings, see e.g., Ben-Tal et al. (2009), Ben-Tal and Nemirovski (2000, 1999,
1998), Bertsimas et al. (2004), Bertsimas and Sim (2004). For example, it has been used successfully to address
problems in inventory management (Ardestani-Jaafari and Delage (2016)), network optimization (Bertsimas
and Sim (2003)), product pricing (Adida and Perakis (2006), Thiele (2009)), portfolio optimization (Goldfarb
and Iyengar (2004, 2003)), and healthcare (Gupta et al. (2017), Bandi et al. (2018), Chan et al. (2018)).

More recently, the robust optimization paradigm has also proved to be an extremely effective means of
addressing decision-making problems affected by uncertainty in two- and multi-stage settings, see e.g., Ben-
Tal et al. (2004), Bertsimas et al. (2011), Zhen et al. (2016), Vayanos et al. (2012), Bertsimas and Goyal
(2012), Xu and Burer (2018). In these models, the uncertain parameters are revealed sequentially as time
progresses and the decisions are allowed to depend on all the information made available in the past. Math-
ematically, decisions are modeled as functions of the history of observations, thus capturing the adaptive
nature of the decision-making process. On the other hand, the requirement that decisions be constant in those
parameters that remain unobserved at the time of decision-making captures the non-anticipative nature of
the decision-process. Two- and multi-stage robust models and solution approaches have proved attractive to
address large scale decision-making problems over time. For example, they have been used to successfully
tackle sequential problems in energy (Zhao et al. (2013), Jiang et al. (2014)), inventory and supply-chain
management (Ben-Tal et al. (2005), Mamani et al. (2017)), network optimization (Atamtiirk and Zhang
(2007)), vehicle routing (Gounaris et al. (2013)), and process scheduling (Lappas and Gounaris (2016)). For
in-depth reviews of the literature on robust optimization and its applications, we refer the reader to Bert-
simas et al. (2010), Gabrel et al. (2014), Gorissen et al. (2015), Yanikoglu et al. (2017), Georghiou et al.
(2018), and to the references there-in.

Most of the models and solution approaches in two- and multi-stage robust optimization are tailored to
problems where the uncertain parameters are exogenous, being independent of the decision-maker’s actions.
In particular, they assume that uncertainties can be observed for free and that the sequence in which they are

revealed cannot be influenced by the decision-maker. Yet, these assumptions fail to hold in many real-world
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applications where the time of information discovery is decision-dependent and the uncertain parameters
only become observable after an often costly investment. Mathematically, some binary measurement (or
observation) decisions control the time of information discovery and the non-anticipativity requirements

depend upon these decisions, severely complicating solution of such problems.

1.1.1. Traditional Application Areas. Over the last three decades, researchers in stochastic program-
ming and robust optimization have investigated several decision-making problems affected by uncertain
parameters whose time of revelation is decision-dependent. We detail some of these in the following.

Offshore Oilfield Exploitation. Offshore oilfields consist of several reservoirs of oil whose volume and initial
deliverability (maximum initial extraction rate) are uncertain, see e.g., Jonsbraten (1998), Goel and Gross-
man (2004), and Vayanos et al. (2011). While seismic surveys can help estimate these parameters, current
technology is not sufficiently advanced to obtain accurate estimates. In fact, the volume and deliverability
of each reservoir only become precisely known if a very expensive oil platform is built at the site and the
drilling process is initiated. Thus, the decisions to build a platform and drill into a reservoir control the time
of information discovery in this problem.

R&D Project Portfolio Optimization. Research and development firms typically maintain long pipelines
of candidate projects whose returns are uncertain, see e.g., Solak et al. (2010). For each project, the firm can
decide whether and when to start it and the amount of resources to be allocated to it. The return of each
project will only be revealed once the project is completed. Thus, the project start times and the resource
allocation decisions impact the time of information discovery in this problem.

Clinical Trial Planning. Pharmaceutical companies typically maintain long R&D pipelines of candidate
drugs, see e.g., Colvin and Maravelias (2008). Before any drug can reach the marketplace it needs to pass a
number of costly clinical trials whose outcome (success/failure) is uncertain and will only be revealed after
the trial is completed. Thus, the decisions to proceed with a trial control the time of information discovery
in this problem.

Production Planning. Manufacturing companies can typically produce a large number of different items.
For each type of item, they can decide whether and how much to produce to satisfy their demand given
that certain items are substitutable, see e.g. Jonsbraten et al. (1998). The production cost of each item type
is unknown and will only be revealed if the company chooses to produce the item. Thus, the decisions to

produce a particular type of item control the time of information discovery in this problem.
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Improving Parameter Estimates. In decision-making under uncertainty, the uncertain parameters in the
problem often have characteristics (e.g., mean) that are not precisely known, see e.g., Artstein and Wets
(1993). If such uncertainties are due to the estimation procedure itself or to the approach used to gather
the data, they can be mitigated for example by running a more elaborate mathematical model to improve
estimates or by gathering additional or more accurate data. Thus, the decisions to gather additional data

and to employ a more sophisticated estimation procedure control information discovery in this problem.

1.1.2. Novel Application Areas. Decision-making problems affected by uncertain parameters whose
time of revelation is decision-dependent also arise in a variety of other applications that have received little
or no attention in the stochastic and robust optimization literature to date.

Physical Network Monitoring. Physical networks (such as road traffic networks, water pipe networks,
or city pavements) are subject to unpredictable disruptions (e.g., road accidents, or physical damage). To
help anticipate and resolve such disruptions, static and/or mobile sensors can be strategically positioned to
monitor the state of the network. The state of a particular node or arc in the network at a given time is
observable only if a sensor is located in its neighborhood at that time. Thus, the sensor positions control the
time of information discovery in this problem.

Algorithmic Social Interventions. Algorithmic social interventions rely on social network information to
strategically conduct social interventions, e.g., to decide who to train as “peer leaders” in a social network
to most effectively spread information about HIV prevention (Wilder et al. (2017)), to decide who to train
as “gatekeepers” in a social network to be able to identify warning signs of suicide among their peers, or to
select individuals in charge of watching out for their peers during a landslide (Rahmattalabi et al. (2019)).
In these applications, the social network of the individuals involved is typically uncertain and significant
capital outlays must be made to fully uncover all social ties. Thus, the decisions to query nodes about their
social ties control the time of information discovery in this problem.

Active Learning in Machine Learning. In active learning, unlabeled data is usually abundant but manually
labeling it is expensive. A learning algorithm can interactively query a user (or other information source
such as workers on Amazon Mechanical Turk!) to manually label the data. For each available unlabeled data
point, the corresponding label will only be revealed if the algorithm chooses to query the user. Thus, the
decisions to query a user about a particular unlabeled data point control the time of information discovery

in this problem.
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Active Preference Elicitation. Preference elicitation refers to the problem of developing a decision support
system capable of generating recommendations to a user, thus assisting in decision making. In active prefer-
ence elicitation, one can ask users a (typically limited) number of questions from a potentially very large set
of questions before making a recommendation for a particular item (or a set of items) for purchase. These
questions can ask users to quantify how much they like an item or they can take the form of pairwise com-
parisons between items, see e.g., McElfresh et al. (2019). The answers to the questions are initially unknown
and will only be revealed if the particular question is asked. The decisions to ask particular questions thus

control the time of information discovery in this problem.

1.2. Literature Review

Decision-Dependent Information Discovery. Our paper relates to research on optimization problems
affected by uncertain parameters whose time of revelation is decision-dependent and which originates in the
literature on stochastic programming. The vast majority of these works assumes that the uncertain param-
eters are discretely distributed. In such cases, the decision process can be modeled by means of a finite
scenario tree whose branching structure depends on the binary measurement decisions that determine the
time of information discovery. This research began with the works of Jonsbréten et al. (1998) and Jonsbraten
(1998). Jonsbraten et al. (1998) consider the case where all measurement decisions are made in the first stage
and propose a solution approach based on an implicit enumeration algorithm. Jonsbraten (1998) general-
izes this enumeration-based framework to the case where measurement decisions are made over time. More
recently, Goel and Grossman (2004) showed that stochastic programs with discretely distributed uncertain
parameters whose time of revelation is decision-dependent can be formulated as deterministic mixed-binary
programs whose size is exponential in the number of endogenous uncertain parameters. To help deal with
the “curse of dimensionality,” they propose to precommit all measurement decisions, i.e., to approximate
them by here-and-now decisions, and to solve the multi-stage problem using either a decomposition tech-
nique or a folding horizon approach. Later, Goel and Grossman (2006), Goel et al. (2006) and Colvin and
Maravelias (2010) propose optimization-based solution techniques that truly account for the adaptive nature
of the measurement decisions and that rely on branch-and-bound and branch-and-cut approaches, respec-
tively. Accordingly, Colvin and Maravelias (2010) and Gupta and Grossmann (2011) have proposed iterative

solution schemes based on relaxations of the non-anticipativity constraints for the measurement variables.
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Our paper most closely relates to the work of Vayanos et al. (2011), where-in the authors investigate two-
and multi-stage stochastic and robust programs with decision-dependent information discovery that involve
continuously distributed uncertain parameters. They propose a decision-rule based approximation approach
that relies on a pre-partitioning of the support of the uncertain parameters. Since this solution approach
applies to the class of problems we investigate in this paper, we will benchmark against it in our experiments.

Robust Optimization with Decision-Dependent Uncertainty Sets. Our work also relates to the literature
on robust optimization with uncertainty sets parameterized by the decisions. Such problems capture the
ability of the decision-maker to influence the set of possible realization of the uncertain parameters and
have been investigated by Spacey et al. (2012), Nohadani and Sharma (2016), Nohadani and Roy (2017),
Zhang et al. (2017), Bertsimas and Vayanos (2017). The models and solution approaches in these papers
do not apply to our setting since, in problems with decision-dependent information discovery, the decision-
maker cannot influence the set of possible realization of the uncertain parameters but rather the information
available about the uncertain parameters. In particular, the problems investigated by Spacey et al. (2012),
Nohadani and Sharma (2016), and Nohadani and Roy (2017) are all single-stage (i.e., static) robust problems
with decision-dependent uncertainty sets, while problems with decision-dependent information discovery are
inherently sequential in nature-indeed, gathering information is only useful if we can use that information
to improve our decisions in the future.

Robust Optimization with Binary Adaptive Variables. Two-stage, and to a lesser extent also multi-stage,
robust binary optimization problems have received considerable attention in the recent years. One stream
of works proposes to restrict the functional form of the recourse decisions to functions of benign complexity,
see Bertsimas and Dunn (2017) and Bertsimas and Georghiou (2015, 2018). A second stream of work relies
on partitioning the uncertainty set into finite sets and applying constant decision rules on each partition,
see Vayanos et al. (2011), Bertsimas and Dunning (2016), Postek and Den Hertog (2016), Bertsimas and
Vayanos (2017). The last stream of work investigates the so-called K-adaptability counterpart of two-stage
problems, see Bertsimas and Caramanis (2010), Hanasusanto et al. (2015), Subramanyam et al. (2017),
Chassein et al. (2019), and Rahmattalabi et al. (2019). In this approach, K candidate policies are chosen
here-and-now and the best of these policies is selected after the uncertain parameters are revealed. Most of
these papers assume that the uncertain parameters are erogenous in the sense that they are independent

of the decision-maker’s actions. Our paper most closely relates to the works of Bertsimas and Caramanis



Vayanos, Georghiou, Yu: Robust Optimization with Decision-Dependent Information Discovery 7

(2010) and Hanasusanto et al. (2015). Bertsimas and Caramanis (2010) provide necessary conditions for the
K-adaptability problem to improve upon the static formulation where all decision are taken here-and-now
(K =1) and propose a reformulation of the 2-adaptability problem as a finite-dimensional bilinear problem.
Hanasusanto et al. (2015) characterize the complexity of two-stage robust programs for the case where the
recourse decisions are binary in terms of the number of second-stage policies K needed to recover the original
two-stage robust problem. They also derive explicit mixed-binary linear program (MBLP) reformulations for
the K-adaptability problem with objective and constraint uncertainty.

Worst-Case Regret Optimization. Finally, our work relates to two-stage worst-case absolute regret mini-
mization problems. These have received a lot of attention in the last decade as they are often seen as being less
conservative than their utility maximizing counterparts, see e.g., Assavapokee et al. (2008b,a), Zhang (2011),
Jiang et al. (2013), Ng (2013), Chen et al. (2014), Ning and You (2018), Poursoltani and Delage (2019), and
the references therein. To the best of our knowledge, our paper is the first to investigate worst-case regret
minimization problems in the presence of endogenous uncertain parameters, and existing approaches cannot

be readily applied in the presence of uncertain parameters whose time of revelation is decision-dependent.

1.3. Proposed Approach and Contributions

We now summarize our approach and main contributions in this paper:

(a) We propose a novel formulation of two- and multi-stage robust problems with decision-dependent
information discovery and prove correctness of this formulation. We leverage this model to generalize
the K-adaptability approximation approach from the literature to problems with decision-dependent
information discovery. This approximation allows us to control the trade-off between complexity and

solution quality by tuning a single design parameter, K.

(b) We propose tractable reformulations of the K-adaptability counterpart of problems with decision-
dependent information discovery in the form of moderately sized mixed-binary linear programs solvable
with off-the shelf solvers. We show that our reformulations subsume as special cases the formulations

from the literature that apply only to problems with exogenous uncertain parameters.

(¢) We generalize the K-adaptability approximation scheme to problems with piecewise linear convex
objective function. We propose a “column-and-constraint” generation algorithm that leverages the

decomposable structure of the problem to solve it efficiently. This enables us to address a special class
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of problems of practical interest that seek to minimize worst-case absolute regret, i.e., the difference
between the worst-case performance of the decision implemented and performance of the best possi-
ble decision in hindsight. This generalization and algorithm apply also to problems with exogenous

uncertain parameters.

(d) We generalize the K-adaptability approximation approach to multi-stage problems. We also propose
a conservative approximation to the K-adaptability counterpart of problems involving continuous

recourse decisions. These generalizations apply also to problems with exogenous uncertain parameters.

(e) We propose two novel mathematical formulations of the robust active preference learning problem. We
show, both by means of stylized examples and through computational results on randomly generated
instances that our proposed approach outperforms the state-of-the-art in the literature in terms of

solution time, solution quality, and usability.

(f) We perform a case study based on real data from the Homeless Management Information System?
(HMIS) to recommend policies that meet the needs of policy-makers at the Los Angeles Homeless
Services Authority® (LAHSA), the lead agency in charge of allocating public housing resources in L.A.
County to those experiencing homelessness. We demonstrate competitive performance relative to the
state of the art in terms of solution time, solution quality, and usability. Our case study also highlights

the benefits of minimizing worst-case regret relative to maximizing worst-case utility.

1.4. Organization of the Paper and Notation

The paper is organized as follows. Sections 2 and 3 introduce two-stage robust optimization problems with
exogenous uncertainty and with decision-dependent information discovery (DDID), respectively. Sections 4
and 5 propose reformulations of the K-adaptability counterparts of problems with DDID as MBLPs, for
problems with objective and constraint uncertainty, respectively. Section 6 generalizes the K-adaptability
approximation to problems with piecewise linear convex objective and to the minimization of worst-case
regret. Section 7 generalizes the K-adaptability approximation to multi-stage problems. Speed-up strategies
and extensions are discussed in Section 8. Section 9 introduces the preference elicitation problem at LAHSA
and formulates it as two-stage robust problem with decision-dependent information discovery. Finally, Sec-
tion 10 discusses our numerical results on both synthetic and real data from the HMIS. The proofs of all

statements can be found in the Electronic Companion to the paper.
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Notation. Throughout this paper, vectors (matrices) are denoted by boldface lowercase (uppercase) letters.
The kth element of a vector & € R™ (k <n) is denoted by x,. Scalars are denoted by lowercase letters, e.g., a
or u. For a matrix H € R**™, we let [H];, € R™ denote the kth row of H, written as a column vector. We let
LF denote the space of all functions from R™ to R*. Accordingly, we denote by B¥ the spaces of all functions
from R™ to {0,1}*. Given two vectors of equal length, x, y € R", we let & oy denote the Hadamard product
of the vectors, i.e., their element-wise product. With a slight abuse of notation, we may use the maximum
and minimum operators even when the optimum may not be attained; in such cases, the operators should
be understood as suprema and infima, respectively. We use the convention that a decision is feasible for a
minimization problem if and only if it attains an objective that is < 4+oc0. Finally, for a logical expression F,

we define the indicator function I(E) as I(E):=1 if E is true and 0 otherwise.

2. Two-Stage RO with Exogenous Uncertainty

To motivate our novel formulation from Section 3, we begin by introducing two equivalent models of two-stage
robust optimization with exogenous uncertainty from the literature and discuss their relative merits. In two-
stage robust optimization with ezogenous uncertainty, first-stage (or here-and-now) decisions x € X C R
are made today, before any of the uncertain parameters are observed. Subsequently, all of the uncertain
parameters £ € 2 C RM¢ are revealed. Finally, once the realization of £ has become available, second-stage
(or wait-and-see) decisions y € Y C R are selected. We assume that the uncertainty set Z is a non-empty
bounded polyhedron expressible as =:= {£ € RVe : A€ < b} for some matrix A € R¥* e and vector b € RE.
As the decisions y are selected after the uncertain parameters are revealed, they are allowed to adapt or
adjust to the realization of £. In the literature, there are two formulations of generic two-stage robust problem
with exogenous uncertainty: they differ in the way in which the ability for y to adjust to the realization of &
is modeled.

Decision Rule Formulation. In the first model, one optimizes today over both the here-and-now decisions
a and over recourse actions y to be taken in each realization of €. Mathematically, y is modeled as a function

(or decision rule) of € that is selected today, along with . Under this modeling paradigm, a generic two-stage
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linear robust problem with exogenous uncertainty is expressible as:
minimize max ETCxz+¢"Quy(¢)
e=
subject to xeX, ye Lﬁé’

y(§) ey
Tx+Wy(§) <H¢

VEe€ =,

where C € RVexNe @ ¢ RNexNy T e REXNe W e REXNy and H € REXNe, We assume that the objective
function and right hand-sides are linear in £&. We can account for affine dependencies on & by introducing
an auxiliary uncertain parameter & Ne+1 and augmenting the uncertainty set with the constraint & Ne+1 =1L

Min-Maz-Min Formulation. In the second model, only @ is selected today and the recourse decisions y
are optimized explicitly, in a dynamic fashion after nature is done making a decision. Under this modeling

paradigm, a generic two-stage robust problem with exogenous uncertainty is expressible as:
minimize max [£'C x +min {{TQy : T:n—l—Wngé’}
gcE yey
subject to xeX.

Problems (1) and (2) are equivalent in a sense made formal in the following theorem.

Theorem 1. The optimal objective values of Problems (1) and (2) are equal. Moreover, the following state-
ments hold true:

(i) Let x be optimal in Problem (2) and, for each € € Z, let

y(&) € argmin {ETCa:JrETQy : Tzc+Wy§H£}.

yey

Then, (x,y(-)) is optimal in Problem (1).

(i) Let (x,y(-)) be optimal in Problem (1). Then, x is optimal in Problem (2).

The theorem above is, to some extent, well known in the literature, see e.g., Shapiro (2017). We provide

a proof in the Electronic Companion EC.2 to keep the paper self contained.

Remark 1. We note that the results in Sections 2 and 3 generalize fully to cases where the objective and
constraint functions are continuous (not necessarily linear) in @, y, and €. Moreover, all of the ideas in our
paper generalize to the case where the technology and recourse matrices, T and W, depend on §. We do not

discuss these cases in detail so as to minimize notational overhead.
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While the models above are equivalent, each of them has proved successful in different contexts. Specif-
ically, Problem (1) has been the underpinning building block of most of the literature on the decision rule
approximation for problems with both continuous and discrete wait-and-see decisions, see Section 1 for refer-
ences. Problem (2) on the other hand has enabled the advent and tremendous success of the K-adaptability
approximation approach to two-stage robust problems with binary recourse, see Bertsimas and Caramanis
(2010), Hanasusanto et al. (2015). It has also facilitated the development of algorithms and efficient solution

schemes, see e.g., Zeng and Zhao (2013), Ayoub and Poss (2016), and Bertsimas and Shtern (2017).

3. Two-Stage RO with Decision-Dependent Information Discovery

In this section, we propose a novel formulation of two-stage robust optimization problems with decision-
dependent information discovery. This formulation underpins our ability to generalize the popular K-
adaptability approximation approach from the literature to two-stage problems affected by uncertain param-
eters whose time of revelation is decision-dependent, see Sections 4 and 5. This section is organized as follows.
In Section 3.1, we describe two-stage robust optimization problems with DDID. We present a formulation
of a generic two-stage robust optimization problem with decision-dependent information discovery from the
literature and an associated approximate solution scheme in Sections 3.2 and 3.3, respectively. Then, in
Section 3.4, we propose an equivalent, novel formulation, that constitutes the main result of this section.

Finally, in Section 3.5, we introduce the K-adaptability approximation scheme for problems with DDID.

3.1. Problem Description

In two-stage robust optimization with DDID, the uncertain parameters & do not necessarily become observed
(for free) between the first and second decision-stages. Instead, some (typically costly) first stage decisions
control the time of information discovery in the problem: they decide whether (and which of) the uncertain
parameters will be revealed before the wait-and-see decisions y are selected. If the decision-maker chooses to
not observe some of the uncertain parameters, then those parameters will still be uncertain at the time when
the decision y is selected, and y will only be allowed to depend on the portion of the uncertain parameters
that have been revealed. On the other hand, if the decision-maker chooses to observe all of the uncertain
parameters, then there will be no uncertainty in the problem at the time when y is selected, and y will be

allowed to depend on all uncertain parameters.



12 Vayanos, Georghiou, Yu: Robust Optimization with Decision-Dependent Information Discovery

In order to allow for endogenous uncertainty, we introduce a here-and-now binary measurement (or obser-
vation) decision vector w € {0,1}"¢ of the same dimension as € whose ith element w; is 1 if and only if
we choose to observe £; between the first and second decision stages. In the presence of such endogenous
uncertain parameters, the recourse decisions y are selected after the portion of uncertain parameters that
was chosen to be observed is revealed. In particular, y should be constant in (i.e., robust to) those uncertain
parameters that remain unobserved at the second decision-stage. The requirement that y only depend on
the uncertain parameters that have been revealed at the time it is chosen is termed non-anticipativity in
the literature. In the presence of uncertain parameters whose time of revelation is decision-dependent, this
requirement translates to decision-dependent non-anticipativity constraints. In addition, the decisions w now

impact both the objective function and the constraints.

3.2. Decision Rule Formulation

In the literature and to the best of our knowledge, two-stage robust optimization problems with DDID have
been formulated (in a manner paralleling Problem (1)) by letting the recourse decisions y be functions of &
and requiring that those functions be constant in &; if w; =0, see Vayanos et al. (2011). Under this (decision
rule based) modeling paradigm, generic two-stage robust optimization problems with decision-dependent

information discovery take the form
minimize r?eaax € Cz+¢ ' Dw+€'Qy(¢)
subject to x € X, weW, yeﬁxz
y(€) Y ¥

VEe=
Ter+Vw+Wy(€) <HE

y(€)=y(&) V& & EE:wof=wot,
where W C {0,1}"¢, D e RVe*Ne  V € RE*Me | and the remaining data elements are as in Problem (1). The
set W can encode requirements on the measurement decisions. For example, it can enforce that a given
uncertain parameter & may only be observed if another uncertain parameter &;; has been observed using
w; < w; . Accordingly, it can postulate that the total number of uncertain parameters that are observed
does not exceed a certain budget @ using Ei\fl w; < Q. The set W can also be used to capture exogenous
uncertain parameters. Indeed, if uncertain parameter &; is exogenous (i.e., automatically observed between

the first and second decision-stages), we require w; = 1. On the other hand, if an uncertain parameter can
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only be observed after the decision y is made, then we require w; = 0. The last constraint in the problem is a
decision-dependent non-anticipativity constraint: it ensures that the function y is constant in the uncertain
parameters that remain unobserved at the second stage. Indeed, the identity wo& = w o &’ evaluates to true
only if the elements of £ and &’ that were observed are indistinguishable, in which case the decisions taken in
scenarios & and & must be indistinguishable. We omit joint (first stage) constraints on @ and w to minimize

notational overhead but emphasize that our approach remains applicable in their presence.

3.3. Decision Rule based Approximation Approach from the Literature

To the best of our knowledge, the only approach in the literature for (approximately) solving problems of
type (3) is presented in Vayanos et al. (2011) and relies on a decision rule approximation. The authors
propose to approximate the binary (resp. continuous) wait-and-see decisions by functions that are piecewise
constant (resp. piecewise linear) on a pre-selected partition of the uncertainty set. They partition Z into

hyper-rectangles of the form

Eoi={tcE:c, _<&<cl,i=1,... .k},

s;—1 8;)
where s € S:= x5 {1,...,7;} CZ ¢ and
¢, <cy<--<e, _, fori=1,...,N;

represent r; — 1 breakpoints along the &; axis. They approximate binary decision rules y; such that y,;(£) €

{0,1} V€ € Z, in Problem (3), by piecewise constant decision rules of the form
yi(€) =) 1(€€E)y;
seES

for some y? € {0,1}, s € S. Similarly, they approximate the real-valued decisions y; such that y;(£¢) € R, in

Problem (3), by piecewise linear decision rules of the form
yi(€) = D> T(E€E.) (y™)7¢
seS

for some y®' € R, s € S. They show that, under this representation, the decision-dependent non-

anticipativity constraints in Problem (3) are expressible as

lys —y?'| < w, Vie{l,...,Ne}t,ie{1,... N, } :y:(§) €{0,1} V€, Vs, s’ €S : s_, =

-J
lyS —yo ' < Mw; Vi €{l,....Ne},i€{l,....N,} :y,(§) ERVE, Vs, s’ €S : s, =5

’
—J
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The first two sets of constraints impose non-anticipativity across distinct subsets subsets of the partition for
the binary and continuous valued decisions, respectively. The last set of constraints imposes non-anticipativity
for the linear decision rules within each subset. We henceforth refer to this decision rule approximation
approach from the literature as the “prepartitioning” approach.

Unfortunately, as the following example illustrates, this approach is highly sensitive to the choice in the

breakpoint configuration.

Example 1. Consider the following instance of Problem (3)
minimize 0
subject to  w € {0,1}%, y € B2
f-e<yl§) <etf—e } VEEE
y(€)=y(f) V€ EEEwol=wof,
where = := [—1,1]%. The inequality constraints in the problem combined with the requirement that y(&) be
binary imply that we must have y;(€) =1 (resp. 0) whenever & > €; (resp. & < €;). Thus, from the decision-
dependent non-anticipativity constraints, the only feasible choice for w is e.

Consider partitioning E according to the approach from Vayanos et al. (2011). If, for all i € {1,2}, there
exists j € {1,...,7; — 1} such that c;. =€;, then the pre-partitioning approach yields an optimal solution to
Problem (4) with objective value 0. On the other hand, if for some i € {1,2}, the jth breakpoint satisfies
ci#e; forallje{l,...,r;— 1}, then the approach from Vayanos et al. (2011) yields an infeasible problem
and the optimality gap of the pre-partitioning approach is infinite. In particular, suppose € = le—3e and that
we uniformly partition each axis iteratively in 2, 3, 4, etc. subsets. Then, we will need to introduce 1999
breakpoints along each direction before reaching a feasible (and thus optimal) solution, giving a total of 4e7

subsets and a problem formulation involving over 8e7 binary decision variables and over 16e7 constraints.

Example 1 is not surprising: the approach from Vayanos et al. (2011) was motivated by stochastic pro-
gramming problems which are less sensitive to the breakpoint configuration than robust problems. As we
will see in Section 10, our proposed approach outperforms that presented in Vayanos et al. (2011) in the case
of robust problems with DDID, in terms of both solution time and solution quality.

Note that Problem (3) generalizes Problem (1). Indeed, if we set w =e and C =0 in Problem (1), we

recover Problem (3). In addition, it generalizes the single-stage robust problem: if we set w = 0, all uncertain
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parameters are revealed after the second stage so that the second stage decisions are forced to be static (i.e.,

constant in &).

3.4. Proposed Min-Max-Min-Max Formulation

Motivated by the success of formulation (2) as the starting point to solve two-stage robust optimization
problems with exogenous uncertainty, we propose to derive an analogous dynamic formulation for the case
of endogenous uncertainties. In particular, we propose to build a robust optimization problem in which the
sequence of problems solved by each of the decision-maker and nature in turn is captured explicitly. The
idea is as follows. Initially, the decision-maker selects « € X and w € W. Subsequently, nature commits to a
realization € of the uncertain parameters from the set =. Then, the decision-maker selects a recourse action
y that needs to be robust to those elements £, of the uncertain vector € that she has not observed, i.e., for
which w; = 0. Indeed, the decision y may have to be taken under uncertainty if there is some ¢ such that
w; =0, in which case not all of the uncertain parameters have been revealed when vy is selected. Indeed,
after y is selected, nature is free to choose any realization of £ € = that is compatible with the original
choice £ in the sense that & = €, for all i such that w; = 1. This model captures the notion that, after y
has been selected, nature is still free to choose the elements &; that have not been observed (i.e., for which
w; = 0) provided it does so in a way that is consistent with those parameters that have been observed.
Mathematically, given the measurement decisions w and the observation €, nature can select any element &

from the set
E(w,€):={€cZ: wol=wok}.

Note in particular that if w = e, then Z(w, &) = {€} and there is no uncertainty when y is chosen. Accordingly,

(1]

if w =0, then Z(w,€) == and y has no knowledge of any of the elements of £. The realizations £, £, and
the sets = and Z(w, §) are all illustrated on Figure 1.

Based on the above notation, we propose the following generic formulation of a two-stage robust optimiza-

tion problem with decision-dependent information discovery:

min max min { max €' Cx+¢ ' Dw+¢ Qy:Tx+Vw+Wy< HE V{EE(UJ,&)}
gez vy |eez(wd) (P)
s.t. xeX, weW.

Note that, at the time when y is selected, some elements of £ are still uncertain. The choice of y thus

needs to be robust to the choice of those uncertain parameters that remain to be revealed. In particular, the
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Figure 1

The figure on the left illustrates the role played by £ in the new formulation (P) and the defi-
nition of the uncertainty sets = and Z(w,€). Consider a setting where = C R? (i.e., N = 2) and
suppose that w = (0,1) so that the decision-maker has chosen to only observe &;. In the fig-
ures, = is shown as the grey shaded area. Once € is chosen by nature, the decision-maker can
only infer that & will materialize in the set Z(w,&) which collects all parameter realizations & € =
that satisfy & = &,, being compatible with our partial observation. The figure on the right illus-
trates the construction of an optimal non-anticipative decision g from the an optimal solution y(&)
to 20613 {segl(%ff,a) £ Cx+¢t'Dw+¢'Quy: Te+Vw+Wy< HE VeEe E(w,é)}, see Theorem 2.
We note that the policy y constructed as in Theorem 2 is constant along the &; direction since here

’11)1:0.

constraints need to be satisfied for all choices of & € Z(w),£). Accordingly, y is chosen so as to minimize the

worst-case possible cost when £ is valued in the set £ € Z(w, §).

Problems (3) and (P) are equivalent in a sense made precise in the following theorem.

Theorem 2. The optimal objective values of Problems (3) and (P) are equal. Moreover, the following state-

ments hold true:

(i) Let (z,w) be optimal in Problem (P) and, for each § such that § =wo& for some € € Z, define

£eE(w,d)

y'(d) € argmin { max £ Czx+€ Dw+€ Qy:Tx+Vw+Wy< HE V{EE(w,J)}.

yey

Also, for each & € 2, define y(&) :=y'(wo&). Then, (x,w,y(+)) is optimal in Problem (3).

(ii) Let (x,w,y()) be optimal in Problem (3). Then, (x,w) is optimal in Problem (P).
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The parameter 4 in item (i) of the theorem above is introduced to ensure that the decision rule y(-) defined

on Z is non-anticipative. Indeed, if for any given (x,w) and €, there are many optimal solutions to problem

mellr}{ max £ Czx+€é Dw+é Qy:Tx+Vw+Wy< HE vgea(w,g)},
Y £€E(w,8)

the decision rule g(-) defined on = through

7(§) € argmin { max £'Czx+¢ Dw+¢ Qy:Tx+Vw+Wy< HE V{EE(w,{)},
yey £€E(w,§)

may not be constant in those parameters that remain unobserved. We note of course that other tie-breaking
mechanisms could be used to build a non-anticipative solution. For example, we may select, among all optimal
solutions, the one that is lexicographically first.

The theorem above is the main result that enables us to generalize the K-adaptability approximation
scheme to two-stage robust problems with decision-dependent information discovery and binary recourse.
Before introducing the K-adaptability approximation, we investigate a concrete instance of Problem (P)

consisting of binary recourse decisions only.

Example 2. Consider the following instance of Problem (P), adapted from Hanasusanto et al. (2015) to

incorporate decision-dependent information discovery.

minimize max  min max (&1 +&2)(y2 —y1) +diw; + daws
we{0,1}2 £c=  ye{0,1}2 ¢e=E(w,€)
st oy 26 VEEE(w,E) (5)
Y1 +y2=1,

where dy, dy € (0,1) are given scalars representing the observation costs associated with wy and wsy, Tespec-
tively, and Z:={€ € R? : -1 <& <1, —1.1 <&, <1}. For each feasible choice of w, we investigate the
associated optimal wait-and-see decision, as well as the corresponding objective function value, see Figure 2.

Consider the choice w = 0, whereby no uncertain parameter is observed between the first and second
decision stages. Then, Z(w,€) ==. Under this here-and-now decision, Problem (5) is expressible as a single-

stage robust problem as follows
y€{0,1}2 I35)

{ min (maX 31 +£2)(y2—y1)> Yy =& VEEE, y1+y2:1}.

It can can be readily verified that the only feasible (and therefore optimal) wait-and-see action in this case is

y=(1,0), a static decision. The associated objective function and corresponding value is

hax —(&1+&) = 2.1.
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Figure 2

_1'1_1 0 1 &1

Companion figure for Example 2, assuming di = dz = 0.4. Optimal wait-and-see decision y (left) and
associated objective function (right) for the cases when w = 0 (first row), w = e (second row), w = (0,1)
(third row), and w = (1,0) (last row) in Problem (5). The optimal solution is given by w* = (1,0). For
the optimal solution w*, the objective function is discontinuous on the set {£ € £ : & =0} and in

particular the optimal objective value is not attained.
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Consider the choice w = e, whereby both uncertain parameters are observed between the first and second

decision stages. Then, Z(w, &) = {€}. Under this here-and-now decision, Problem (5) reduces to

max{ min = (& +&)(ya—y1)+di+dy 2 oy > &, y1+y2—1}.

gex ye{0,1}2
The constraints in the problem imply that y = (1,0) is the only feasible (and therefore optimal) solution
whenever & > 0. For & <0, the optimal choices are y = (1,0) if & + & >0, and y = (0,1), else. The

associated objective function is

—(&1+&2) if (§&1>0) or (£ <0 and & +&2>0)
d1+d2+r§1€aax

&1+ & else,
yielding an objective value of (1.14+dy + d3) that is not attained.
Consider the choice w = (0,1), whereby only € is observed between the first and second decision stages.

Then, Problem (5) reduces to

max { min max (& +&)(y2—y1)+de  y1 =& VE €-1,1], y1+y2:1}.

€26[-1.1,1] (ye{0,1}2 £&1€[-1,1]
For any choice of €, the only option for the wait-and-see decision is y = (1,0) (since &1 remains uncertain,).

The associated objective function and corresponding objective value is
d2 + max {*(61 +£2) : 51 € [*1,1], 52 € [71.1, 1]} = dg + 2.1.

Lastly, consider the choice w = (1,0), whereby only & is observed between the first and second decision

stages. Then, Problem (5) reduces to

max { min max (&1 +&)(y2—y1)+di ¢ yi1 =&, Y1ty = 1} .
&1€[-1,1] ye{0,1}2  &2€[-1.1,1]

For & > 0, the only feasible (and therefore optimal) choice is y = (1,0). If & <0, then the optimal wait-and-

see decision is y = (0,1). The associated objective function is

—(&1+&) if&>0

d, + max
¢cE

& +& else,
yielding an objective value of (1.1+dy) that is not attained by any feasible solution.
We conclude that, since dy, ds € (0,1), the optimal solution to Problem (5) is w* = (1,0) with associated

optimal objective value (1.1+dy) which is never attained.
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The above example shows that, for any given choice of here-and-now decisions, the set of parameters & for
which a particular wait-and-see decision is optimal may be non closed and non-convex and that the optimal
value of the problem may not be attained. This result is expected from the analysis in Hanasusanto et al.
(2015), since Problem (P) generalizes Problem (2). Example 2 illustrates that this may be the case even if
a portion of the uncertain parameters remain unobserved in the second stage.

Two-stage robust optimization problems with decision-dependent information discovery have a huge mod-
eling power, see Sections 1 and 9. Yet, as illustrated by the above example, they pose several theoretical
and practical challenges. As we will see in the following sections, whether we are or not able to reformu-
late the problem exactly as an MILP depends on the absence or presence of uncertainty in the constraints.
When in presence of constraint uncertainty, we can always compute an arbitrarily tight outer (lower bound)

approximation, see Section 5.

3.5. K-Adaptability for Problems with Decision-Dependent Information Discovery

Instead of solving Problem (P) directly, we propose to approximate it through its K-adaptability counterpart,

min max min{ max £ Czx+& Dw+¢'Qy* : Tx+Vw+Wy"<HE VﬁEE(w,E)}
ge= hek | gem(w @) (Px)

st. zeX,weW,y*eY, kek,

where K :={1,...,K}. In this problem, K candidate policies y',...,y* are chosen here-and-now, that is
before w o € (the portion of uncertain parameters that we chose to observe) is revealed. Once w o & becomes
known, the best of those policies among all those that are robustly feasible (in view of uncertainty in the
uncertain parameters that are still unknown) is implemented. If all policies are infeasible for some £ € =, then
we interpret the maximum and minimum in (Px) as supremum and infimum, that is, the K-adaptability
problem evaluates to +oo. Problem (Px) is a conservative approximation to program (P). Moreover, if
|V| < 0o and K =|Y|, then the two problems are equivalent. In practice, we hope that a moderate number
of candidate policies K will be sufficient to obtain a (near) optimal solution to (P).

The Price of Usability. We note that Problem (Py) is interesting in its own right. Indeed, in problems
where usability is important (e.g., if workers need to be trained to follow diverse contingency plans depending
on the realization w o €), Problem (Px) may be an attractive alternative to Problem (P). In such settings,
the loss in optimality incurred due to passing from Problem (P) to Problem (Px) can be thought of as the

price of usability. For example, consider an emergency response planning problem where, in the first stage,
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a small number of helicopters can be used to survey affected areas and, in the second stage, and in response
to the observed state of the areas surveyed, deployment of emergency response teams is decided. In practice,
and to avoid having to train teams in a large number of plans (yielding significant operational challenges),

only a moderate number of response plans may be allowed.

Remark 2. Ifw=e, D=0, and V =0, then Z(w,&) = {€} and therefore Problem (Py) reduces to

minimize max |£'C x4+ min {£TQ y* Tz + Wy SH{}
E€E kel (6)
subject to xeX,y*e), kek,

the K-adaptability counterpart of Problem (2) with only exogenous objective uncertainty, originally studied

by Bertsimas and Caramanis (2010) and then Hanasusanto et al. (2015).

Relative to the problems studied by Bertsimas and Caramanis (2010) and Hanasusanto et al. (2015),
Problem (Pg) presents several challenges. First, the second stage problem in (Pg) is a robust (as opposed
to deterministic) optimization problem-indeed, we are in the face of a min-max-min-max, rather than sim-
ply min-max-min, problem. Second, the uncertainty sets involved in the maximization tasks of this robust
problem are decision-dependent. While Problem (Px) appears to be significantly more complicated than its
exogenous counterpart, it can be converted to an equivalent min-max-min problem by lifting the space of

the uncertainty set, as show in the following lemma that is instrumental in our analysis.

Lemma 1. The K-adaptability problem with decision-dependent information discovery, Problem (Pg), is

equivalent to

min max min MNTCx+ ()" Dw+ (€8T L Te+Vw+ Wy < HEF
{€F ek €EX (w) keK {(5 ) (5 ) « ) Qv Y : } (7)

st. zeX, weW,y*eY, kek,

where

EX(w) := {{&" hex €EF : € € E such that £&F € Z(w, &) for all keK}. (8)

For any fixed w € W, the subvector £ in the definition of EX (w) represents the uncertainty scenario that
“nature” will choose if the decision-maker acts according to decisions w in the first stage and according to
policy k in the second stage. The set EX (w) collects, for each k € K, all feasible choices that nature can

take if the decision-maker acts according to w and then y* in the first and second stages, respectively. Thus,
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in Problem (7), the decision-maker first selects @, w, and y*, k € K. Subsequently, nature commits to the
portion of observed uncertain parameters w o € and to a choice £*, k € K, associated with each candidate
policy y*. Finally, the decision-maker chooses one of the candidate policies.

In what follows, we provide insights into the theoretical and computational properties of the K-adaptability
counterpart to two-stage robust problems with DDID and with binary recourse. We derive explicit MBLP
reformulations for the K-adaptability counterpart (Px) with objective and constraint uncertainty, see Sec-
tions 4 and 5, respectively. We generalize the K-adaptability approximation to problems with piecewise

linear convex objective and to multi-stage problems with DDID in Sections 6 and 7, respectively.
4. The K-Adaptability Problem with Objective Uncertainty
4.1. The K-Adaptability Problem

In this section, we focus our attention on the case where uncertain parameters only appear in the objective

of Problem (P) and where the recourse decisions are binary, being expressible as

minimize max min{ max E£'Czx+€'Dw+€'Quy: T$+Vw+Wy<h}

€€E YEY geE(w.E) (PO)
subject to x € X, weW,
where h € RY and Y C {0,1}"v. We study the K-adaptability counterpart of Problem (PQ) given by
minimize max min { max £ Czx+€ Dw+€ Qy° : Tr+Vw+Wyk < h}
£cE kEK (geE(w,§) (POK)
subject to z€ X, weW, y* ), kek.
Applying Lemma 1, we are then able to write Problem (POy) equivalently as
minimize max min {(£")"Cx+ (" )" Dw+(¢")'Qy"* : Te+Vw+Wy"<h}
{€* ke €EX (w) keK (9)

subject to X, weW,y*cY, kck,

where =X (w) is defined as in Lemma 1. In the absence of uncertainty in the constraints, the constraints in

the K-adaptability problem can be moved to the first stage, as summarized by the following lemma.

Lemma 2. The K-adaptability counterpart of the two-stage robust optimization problem with decision-

dependent information discovery, Problem (POy), is equivalent to

minimize max min MNTCx+ ()" Dw+ (£°)TQ y*
s, i (€7 Cat€) D+ (€)Qu')
subject to zeX, weW,y* eV, kek (10)

Tz+Vw+Wy"<h Vkek,

where ZX (w) is as defined in Equation (8).
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Note that for all w € W, the set =% (w) is non-empty and bounded. Thus, (z,w, {y*}rcx) € X X W x Y¥

is feasible in Problem (10) if Tx + Vw + Wy* <h for all k € K, whereas to be feasible in Problem (9) (and

accordingly in Problem (PQk)), it need only satisfy Tx + Vw + Wy"* < h for some k € K. Thus, a triplet

(z,w,y") feasible in (9) (and thus in (POg)) need not be feasible in Problem (10). However, the proof of

Lemma 2, provides a concrete way to construct a feasible solution for Problem (10) from a feasible solution

to Problem (9) that achieves the same optimal value.

The lemma above will be the key to reformulating Problem (POx) as an MBLP, see Section 4.2. It also

enables us to analyze the complexity of evaluating the objective function of the K-adaptability problem

under a fixed decision. Indeed, from Problem (10), it can be seen that for any fixed choice (&, w, {y*}.cx),

the objective value of (POk) can be evaluated by solving an LP obtained by writing (10) in epigraph form.

We formalize this result in the following.

Observation 1. For any fized K and decision (x,w,{y*}rex), the optimal objective value of the K-

adaptability problem (POg) can be evaluated in polynomial time in the size of the input.

4.2. Reformulation as a Mixed-Binary Linear Program

In Observation 1, we showed that for any fixed K, x, w, and y*, the objective function in Problem (POx)

can be evaluated by means of a polynomially sized LP. By dualizing this LP and linearizing the resulting

bilinear terms, we can obtain an equivalent reformulation of Problem (POy) in the form of an MBLP.
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Theorem 3. Suppose X C{0,1}"=. Then, Problem (POy) is equivalent to the following MBLP.

minimize  b' B+ Z b’ 3"

ke

subject to xeX, weW,y e kek
acRE, BeRE, BFeRE, " eRYe ke
ﬁkeRNs,E’“eRﬁz,ﬁ’“eRf&,y’“eRﬁy, kek

ela=1, AT3= Zﬁk

ke

11
ATBF 4+ 7" = Cz* + Dw* + Qy* VkekK ()

Tr+Vw+Wy*<h Vkek

Vk e,
7 <y g <ope, G > (a — ety

T <y 4+ M(e—w), ¥ < Mw, 7* > —Mw, ¥* > " — M(e — w)

where M is a suitably chosen “big-M” constant.

We emphasize that the size of the MBLP (11) in Theorem 3 is polynomial in the size of the input data
for the K-adaptability problem (POy). Note that, contrary to Hanasusanto et al. (2015), we require that
X C{0,1}"=. This is to ensure that we are able to linearize the bilinear terms involving the @ variables that

arise from the dualization step.

Remark 3. Most MILP solvers* allow reformulating the bilinear terms without the use of “big-M” con-
stants, which are known to suffer from numerical instability. These include, for example, so-called SOS or

IfThen constraints. We leverage some of these computational tools in our experiments, see Section 10.

Remark 4. Suppose that we are only in the presence of erogemous uncertainty, i.e., w=e, D =0, and
V =0. Then, the last set of constraints in Problem (11) implies that ¥* =~* for all k € K. Since v* is free,
the second and third constraints are equivalent to

ATﬁ:ZC§k+ka7AT/3k

ke

Ezploiting the fact that € RY, e"ax=1, and T* = o, we can equivalently express this constraint as

AT <ﬂ+2ﬂ’“> =Cz+)_ Qy".

ke ke
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We conclude that, in the presence of only exogenous uncertainty, Problem (11) is equivalent to
minimize b3
subject to xeX, weW,y* e kek
acRE, BeRE, BFeRE, 5 cRYY, keK
e'a=1, ATB= Cm+ZQ§k
kek
Tx+Wyt<h Vkek
<y ¥ <ae, 7> (ap—1e+y" VkeKk,
where we used the change of variables B < B+, . B*. We then recover the MBLP formulation of the K-

adaptability problem (6). Thus, our reformulation encompasses as a special case the one from Hanasusanto

et al. (2015).
5. The K-Adaptability Problem with Constraint Uncertainty

The starting point of our analysis is the reformulation of the K-adaptability Problem (P ) as the min-max-

min problem (7). Unfortunately, this problem is generally hard as testified by the following theorem.
Theorem 4. FEvaluating the objective function in Problem (7) if K is not fized is strongly NP-hard.

We reformulate Problem (7) equivalently by shifting the second-stage constraints T'c + Vw+ Wy* < H¢*
from the objective function to the definition of the uncertainty set. We thus replace =¥ (w) with a family of

uncertainty sets parameterized by a vector £.

Proposition 1. The K-adaptability problem with decision-dependent information discovery, Problem (7),

s equivalent to

o e e . k TC k TD k\T k
minimize max {gk}kilggk(w,e) min {(¢") Cx+ (&))" Dw+(£")TQy"}
£,=0 (12)
subject to € X, weW,y*c), keck,
where L :={1,...,L}*, L is the number of second-stage constraints in Problem (P), and the uncertainty

sets EX(w, L), L€ L, are defined as
wolF=wo& Vk € K for some E €=
EX(w,€) = {€" ek €25 1 T+ Vo + Wy < He VkeK: €, =0 ,
[Tz +Vw+Wy*|, >[HE ], VEeK:£,#0

where, for notational convenience, we have suppressed the dependence of 25 (w,£) on x and y*, k€ K.
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The elements of vector £ € £ in Proposition 1 encode which second-stage policies are feasible for the
parameter realizations {&*}rcx € EX(w,£). Indeed, recall that € can be viewed as the recourse action
that nature will take if the decision-maker acts according to y* in response to seeing €. Thus, policy y*
is feasible in Problem (7) (and thus in Problem (Pg)) if £, = 0. On the other hand, policy y* violates the
£,-th constraint in Problem (7) if €, # 0. Thus, if £, # 0, this implies that the £,-th constraint in (Pg) is
violated for some & € Z(w,€) and therefore y* is not feasible in (P ). Note that, in contrast to the case
with exogenous uncertainty discussed by Hanasusanto et al. (2016), £, =0 if and only if policy y* is robustly

feasible in (Px).

Remark 5. We remark that instead of interchanging the inner minimization and mazimization problems
in (Pk), as is done in Lemma 1, we could robustify the constraints in the inner mazimization problem in (Px)
to obtain a min-maz-min-max problem where the inner maximization problem involves only a finite number
of constraints parameterized by €. The resulting inner mazimization problem involves products of & with
the dual variables resulting from the robustification. Interchanging the inner minimization and mazimiza-
tion problems then yields a non-convex bilinear maximization problem which precludes the use of standard
robust optimization techniques. Similarly, dualizing the resulting inner maximization problem also results in

a nonlinear non-convex formulation. Thus, we choose to first apply Lemma 1.

Having brought Problem (Pg) to the form (12), it now presents a similar structure to a problem with
objective uncertainty (see Section 4) with the caveats that the problem involves multiple uncertainty sets
that are also open. Next, we employ closed inner approximations Z¥ (w,£) of the sets E¥ (w, £) that are

parameterized by a scalar € > 0O:

L. ) o o . .
minimize max max min C x + D w +
LeL  {¢k}pexeEK (w,e) Zefo {(£ ) (£ ) (€ ) Qy }

(12)
subject to € X, weW,y*c), kek,
where the uncertainty sets =X (w, £) are defined as

wotfF=wof Vk € K for some £ € =

=X (w,8) = {€" hhex € EF T+ Vw+Wyk < HE* VkeK:£,=0
[Tz +Vw+Wy*|, >[HE |, +e YheK:£,#0

Using this definition, we next reformulate the approximate Problem (12.) equivalently as an MBLP.
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Theorem 5. The approzimate problem (12.) is equivalent to the mized binary bilinear program

min 7T
s.t. TER, zeX, weW,y* €)Y, kek
al)eRY, of(€)eRE, ke, v(€) eRE, n*(£) eRNe ke, LeL
)\(ﬁ) GAK(E)v Bk(z) GR{‘H k EIC?
ATa(E):Zwonk(ﬁ)
ke
ATak(0)— H B ) +won* (€)= . (0) [Cx+Dw+Qy"] VkekK:£,=0
ATa"(8) + [H]o v () +won(£) = A, () [Cz+Dw+Quy*] Vkek: 4,40 ( E€€IL (13)

T>b" (a(£)+2ak(£)> =Y (Tx+Vw+Wy") 849

ke keK:
£,=0
+ Z ([T:B + Vw + Wyk]ek — e) ’yk(ﬁ)

keK: )

£,#0
ATa(l) = Z won”(£)

keK
ATa*(€) + [H] gy (8) +won*(€) =0 Vkek Veer,,
b’ (a(ﬂ) + Za'%l)) + Z ([T:c +Vw+ Wyk]ek - e) ¥, (£) < -1
keK keK

where A (£) :={AERE : e"A=1, A\, =0VEkeK:£,#0}, OL:={Lc L:£#0} and LT :={Lc L:£>0}
denote the sets for which the decision (x,w,{y}rex) satisfies or violates the second-stage constraints in

Problem (12), respectively.

Since all bilinear terms in Problem (13) involve one continuous and one binary variable, the problem
can be reformulated equivalently as an MBLP using standard big-M techniques, see Hillier (2012). Sim-
ilar to the robust counterpart resulting from the decision rule approximation proposed in Vayanos et al.
(2011) (see also Section 3.3), Problem (13) presents a number of constraints and decision variables that
is exponential in the approximation parameter, in this case K. Relative to the prepartitioning approach
from Vayanos et al. (2011), our method does however present a number of distinct advantages. First, the
trade-off between approximation quality and computational tractability is controlled using a single design
parameter; in contrast, in the prepartitioning approach, the number of design parameters equals the number
of observable uncertain parameters. Second, as we increase K, the quality of the approximation improves in

our case, whereas increasing the number of breakpoints along a given direction does not necessarily yield to
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improvements in the prepartitioning approach. Finally, to identify breakpoint configurations resulting in low

optimality gap, a large number of optimization problems need to be solved.

Remark 6. Theorem 5 directly generalizes to instances of Problem (Pr) where the technology and recourse
matrices T, V', and W depend on £. Indeed, it suffices to absorb the coefficients of any uncertain terms
in T, V, and W in the right-hand side matriz H. Suppose for example that T(€) := Efil T¢,, V(£) =

e Vg, and W(€) =308, W"E,, for some T" € RENe Vi e REXNw gnd W™ e RE*Nv n=1,... N
Using similar arguments as in the proof of Theorem 5, we can derive a formulation akin to the one in
Problem (13) where T=0, V =0, and W =0 and, in the constraint associated with k € IC, H is replaced
with

The following observation exactly parallels Remark 4 for the case of constraint uncertainty.

Observation 2. Suppose that we are only in the presence of exogenous uncertainty, i.e., w=e, D=0, and
V =0. Then, Problem (13) reduces to the MBLP formulation of the K-adaptability problem (6) from Hana-

susanto et al. (2015).
6. The Case of Piecewise Linear Convex Objective

In this section, we investigate two-stage robust optimization problems with DDID and objective uncertainty
where the objective function is given as the maximum of finitely many linear functions, see Section 6.1.
We generalize the K-adaptability approximation approach to this problem class by obtaining an equivalent
reformulation of the K-adaptabiliy counterpart in the form of an MBLP in Section 6.2. As the size of this
MBLP is exponential in K, we propose an efficient column-and-constraint generation procedure to address it
in Section 6.3. We show that this formulation can be leveraged to solve certain classes of worst-case absolute

regret minimization problems in Section 6.4.

6.1. Problem Formulation

A piecewise linear convex objective function can be written compactly as the maximum of finitely many

linear functions of & and (x,w,y), being expressible as

max £'Cla+¢ D'w+€'Q'y, (14)
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for some matrices C* € RVNe*XNa D' ¢ RVeXNe and Q' €e RMexNv €T, T C N. A two-stage robust optimiza-
tion problem with DDID, convex piecewise linear objective given by (14), and objective uncertainty is then
expressible as

min max min max {max £TCiw+£TDiw+§TQiy}

ge= YEY geE(w ) (€T

(POPWL)
s.t. xeX, weW.

Note that, as in Section 4, our framework remains applicable in the presence of joint deterministic constraints
Tx+ Vw+ Wy < h on the first and second stage decision variables. We omit these to minimize notational

overhead.

6.2. K-Adaptability Approximation & MBLP Reformulation

The K-adaptability counterpart of Problem (PO"W) reads

min max min max {max ETC z+¢ D'w+£7Q° yk}
g2 kEK gcE(w,€) €L

(PORM™)
s.t. zeX, weW,y*e) kek.

We begin this reformulation by the following lemma, which parallels Lemma 1, and shows that we can

exchange the order of the inner min and max in formulation (POLW"), provided we index & by k.

Lemma 3. The K-adaptability counterpart of Problem (POLYW™) is equivalent to

C ) T i R o
minimize max min { max Ciz+ Diw+
{€F} e €EK (w) keEK { ieT (&%) (€") €)' Q'y }

(15)
subject to xTeX, weW,y ey, kek.

Next, by leveraging Lemma 3, we are able to reformulate Problem (15) exactly as an MBLP. This result is

summarized in the following theorem.

Theorem 6. Problem (POYYY) is equivalent to the bilinear program
minimize T
subject to TER, zcX, weW,y*c), keck
o eRE, B*eRE, BF e RE, v** e RV, VEe K, i € TX

r > bTI@i + ZbTﬂi,k (16)
ke
at=1
VieIX,
ATBY tworytt =al (Cvx + D¥w+ Q*y*) Vkek

ATIBi:ZwO,Yi,k

ke
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which can be written equivalently as an MBLP by linearizing the bilinear terms, provided X C {0,1}"=.

Albeit Problem (16) is an MBLP, it presents an exponential number of decision variables and constraints
making it difficult to solve directly using off-the-shelf solvers even when K is only moderately large (K g
4). In the remainder of this section, we exploit the specific structure of Problem (POPWL) to solve its
K-adaptability counterpart ezactly by reformulating it as an MBLP that presents an attractive structure

amenable to decomposition techniques.

6.3. “Column-and-Constraint Generation” Algorithm

Recently, a so-called “column-and-constraint generation” algorithm has been proposed by Zeng and Zhao
(2013) to solve two-stage linear robust optimization problems exactly. Here, we propose a variant of their
algorithm to solve the K-adaptability counterpart (POIP(WL). The key idea is to decompose the problem into
a relaxed master problem and a series of subproblems indexed by % € Z¥. The master problem initially only
involves the first stage constraints and a single auziliary MBLP is used to iteratively identify indices 2 € Z*
for which the solution to the relaxed master problem becomes infeasible when plugged into subproblem 3.
Constraints associated with infeasible subproblems are added to the master problem and the procedure
continues until convergence. We now detail this approach.
We define the following relaxed master problem parameterized by the index set ICIX
minimize 7T
subject to TER, zc X, weW,y*c), keck
ot €RE, B € RE, BF e RE, v € RV, Ve K, i€l
T2 bTE D BT (CCGumer D)

ke

at=1 7
Viel.

ATﬂi:Zwo,yi,k

ke
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Given variables (7,x,w,{y"}cx) feasible in the master problem, we define the #th subproblem, ¢ € Z,
through

minimize 0

subject to o eRY, B* eRY, B** e RE, v** e RYe, Vb e K

> bTﬁi+ZbTﬁi,k
rer (CCGLw (T, w, {Y" Yiex))
elat=1

ATBH fworyt =ak (Cha+ Divw+Qiry*) VheK

AT,BiZZwO’Yi’k.

ke

An inspection of the Proof of Theorem 6 reveals that the last three constraints in Prob-
lem (CCG? ., (T, @, w,{y"}rcx)) define the feasible set of the dual of a linear program that is feasible and
bounded. Thus, for 7 sufficiently large, Problem (CCG?,, (7,2, w, {y"*}rcx)) Will be feasible.

To identify indices of subproblems (CCG? (7,2, w, {y*}rex)) that, given a solution (7,2, w,{y*}rex) to

the relaxed master problem, are infeasible, we solve a single feasibility MBLP defined through

max 0

s.t. OER €= ¢ cE(w,§), ke
neRX ¢ e{0,1}, kek
0 <n. Vkek (CCGteas(, w, {y" }rex))
me> (€)TC z+ (€Y Dlwt (69 Q' VieT,
M < (€N)TC 2+ (¢5) D'w+ (€)' Qyt+ M(1-¢}) | kek
e'¢F=1 Vkek.

The following proposition enables us to bound the optimality gap associated with a given feasible solution

to the relaxed master problem.

Proposition 2. Let (z,w,{y*}icx) be feasible in the relazed master problem (CCGumer(Z)). Then,
(@, w,{y*Yeex) is feasible in Problem (POY™™) and the objective value of (x,w,{y"}rex) in Prob-

lem (POVY) is given by the optimal objective value of Problem (CCGieas(,w, {Y* }rex))-

Proposition 2 implies that, for any (z,w, {y* }rcx) feasible in the relaxed master problem (CCGysir(Z)), the

optimal value of (CCGtens(®, w, {y" }rcx)) yields an upper bound to the optimal value of the K-adaptability
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problem (POLWE). At the same time, it is evident that for any index set ICIX , the optimal value of
Problem (CCGmei:(Z)) yields a lower bound to the optimal objective value of Problem (POYWY),

The lemma below is key to identify indices of subproblems ¢ € Z¥ that are infeasible.

Lemma 4. Let (7,2, w,{y"}rex,{a% B };c7.{B*",¥"* }iczeex) be optimal in the relazed master prob-
lem (chmm(f)). Let (0,€,{€"}rexc,m, {C* }rex) be optimal in Problem (CCGteas(T,w, {y*Yiex)). Then, the
following hold:

(i) 0=7;
(ii) If @ =7, then Problem (CCG: . (7, z,w,{y"}rex)) is feasible for all i € TX;

(1ii) If @ > 7, then the index i defined through

Q=Y i-I(¢F=1) Vkek

i€
corresponds to an infeasible subproblem, i.e., Problem (CCG: . (T, 2, w,{y"*}rcx)) is infeasible.
Propositions 2 and Lemma 4 culminate in Algorithm 1 whose convergence is guaranteed by the following

theorem.

Theorem 7. Algorithm 1 terminates in a final number of steps with a feasible solution to Problem (PO,

The objective value 0 attained by this solution is within 0 of the optimal objective value of the problem.

In the following, we show that certain classes of two-stage robust optimization problems that seek to

minimize the “worst-case absolute regret” criterion can be written in the form (PO"WY).

6.4. Application to Worst-Case Absolute Regret Minimization

According to the “worst-case absolute regret” criterion, the performance of a decision is evaluated with
respect to the worst-case regret that is experienced, when comparing the performance of the decision taken
relative to the performance of the best decision that should have been taken in hindsight, after all uncertain
parameters are revealed, see e.g., Savage (1951). The minimization of worst-case absolute regret is often
believed to mitigate the conservatism of classical robust optimization and is thus attractive in practical
applications, see also Section 10 for corroborating evidence.

Mathematically, we are given a utility function

uwz,w,y,§) =€ Cat+& Dw+&'Qy (17)
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Algorithm 1: “Column-and-Constraint” Generation Procedure.

Inputs: Optimality tolerance ¢; K-adaptability parameter K;

Output: Near optimal solution (x,w, {y*}ex) to Problem (POYYY) with associated objective 6;
Initialization:

Initialize upper and lower bounds: LB < —oco and UB < +o0;

Initialize index set: Z  {e};

while UB—-LB > § do
Solve the master problem (CCQmm@)), let (7,2, w, {y*}iex, {0, B}z, {B*", 7" }icz rexc) be an

optimal solution;
Let LB <73
Solve the feasibility subproblem (CCGseas(, w, {y*}rex)), let (0,€,{€"}reic, M, {¢* }rex) denote an
optimal solution;
Let UB « 6;
if 6 > 7 then
Dt 1(¢F=1) for all k € K;
7+ TU{i};

end

end

Result: (x,w, {y"}rex) is near-optimal in (POLYY) with objective value 6.

for which high values are preferred. This function depends on both the decisions @, w, and y, and on the
uncertain parameters £. Given a realization of €, we can measure the absolute regret of a decision (z,w,y)
as the difference between the utility of the best decision in hindsight (i.e., after € becomes known) and the

utility of the decision actually taken, i.e.,

{ max u(z',w', Yy, §) —u(z,w,y,§) T €X, w W, y'Ey}.

1 ap!
x,wh,Yy

Regret averse decision-makers seek to minimize the worst-case (maximum) absolute regret

EEE(w,E) x/ w',y’

max { max u(z',w,y &) —ulz,w,y,&) ' e X, weW, y 63}}. (18)
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A two-stage robust optimization problem with DDID in which the decision-maker seeks to minimize his
worst-case absolute regret is then expressible as

min max min max { max u(z’,w,y &) —ulz,w,y,&) ' €X, w eW, y’e)}}

EcE YEY gcE(w,E) (= w'y

(WCAR)
s.t. zeX, weW.

The following observation shows that under certain assumptions, Problem (WCAR) can be written in the

form (PO"WE).

Observation 3. Suppose that the utility function u in (17) and the feasible sets X, W, and ) in Prob-
lem (WCAR) are such that:

(i) Either C=0 or X :={x:e'x =1}, and
(i1) Either D=0 or W:={w:e'w=1}, and

(111) Fither Q=0 or Y:={y:e'y=1}.

Then, Problem (WCAR) can be written in the form (PO"WY).

In Sections 9 and 10, we leverage Observation 3 and use Theorems 6 and 7, and Algorithm 1 to solve an
active preference learning problem that seeks to recommend housing allocation policies with least possible

worst-case regret.
7. The Multi-Stage Case with Objective Uncertainty

In this section, we show that many of our results generalize to the multi-stage case. To this end, we propose a
novel formulation of multi-stage robust optimization problems with decision-dependent information discovery.
This formulation will underpin our ability to generalize the K-adaptability approximation approach for
problems with endogenous uncertainty to the multi-stage setting. As in the two-stage case, it will enable
us to construct more tractable and accurate conservative approximations to such problems. To minimize
notational overhead, we focus on problems with only objective uncertainty. However, our results for the
constraint uncertainty case generalize to this multi-stage setting too.

The remainder of this section is organized as follows. First, we introduce two equivalent models of multi-
stage robust optimization problems with exogenous and endogenous uncertainty, see Sections 7.1 and 7.2,
respectively. Then, in Section 7.3, we leverage the second formulation to generalize the K-adaptability
framework to the multi-stage setting. Finally, we show in Section 7.4 that the K-adaptability problem can

be reformulated equivalently as an MBLP.
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7.1. Multi-Stage Robust Optimization with Exogenous Uncertainty

In the literature, and similar to the two-stage case, there are (broadly speaking) two formulations of a
generic multi-stage robust optimization problem with exogenous uncertainty over the planning horizon 7 :=
{1,...,T}. These differ in the way in which the ability for the time ¢ decisions to adapt to the history of
observed parameter realizations is modeled.

Decision Rule Formulation. In the first model, one optimizes today over all recourse actions y*(€) €
RNv: that will be taken in each realization of £ € 2. Under this modeling paradigm, a multi-stage robust

optimization problem with erogenous uncertainty is expressible as

minimize r?eaEX Z STQt y' (€)

teT

subject to  y' € ,Cx;“ vteT

y'(&) ey, vteT (19)
> Wiy'(€) < HE VEEE,
teT

Yy (&) =y'(w'of) VteT
where Q' € RNe*Nv: W' e RLeXNu:  and H' € REt*Ne. The fized binary vector w' € {0,1}"¢ represents the

information base at time ¢+ 1, i.e., it encodes the information revealed up to (and including) time ¢. Thus,
w! =1 if and only if & has been observed at some time 7 € {0,...,t}. As information cannot be forgotten, it
holds that w! > w!~! for all £ € T. The last constraint in Problem (19) ensures that the decisions y, t € T,
are non-anticipative: it stipulates that ¢y* can only depend on those parameters that have been observed up
to and including time ¢ — 1.

Dynamic Formulation. In the second model, the recourse decisions y* are optimized explicitly after nature
is done making a decision. Under this modeling paradigm, a generic multi-stage robust problem with exoge-

nous uncertainty is expressible as:

min max min max - min max TRyt
yley, ¢leE y2ey, £2€E(wl,gl) yTeyr ¢TeE(wT—1,£T-1) Z(E ) Qy
teT (20)
st. > Wiy <H@E) v e,

teT
where, as in the two-stage case, we have

Ew e ) ={¢ecE:w ol =w ot} VteT.

We state the following theorem without proof. The proof follows directly from arguments similar to the

proof of Theorem 1 by following a recursive argument. Thus, we omit it.
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Theorem 8. Problems (19) and (20) are equivalent.

7.2. Multi-Stage Robust Optimization with Decision-Dependent Information Discovery

In this section, we investigate a variant of Problem (19) (and accordingly (20)) that enjoys much greater
modeling flexibility since the time of information discovery (i.e., the information base) is kept flexible. Thus,
we interpret the information base w? € W, C {0,1}"¢ as a decision variable, which is allowed to depend
on &. The set W, may incorporate constraints stipulating, for example, that a specific uncertain parameter
can only be observed after a certain stage or that an uncertain parameter can only be observed if another
one has, etc. We assume that a cost is incurred for including uncertain parameters in the information
base (equivalently, for observing uncertain parameters) and that the observation decisions w® also impact
the constraints through the additional term »_, _ V'w', where V* € R***Ne. As before, we propose two
equivalent models for multi-stage robust problems with DDID which differ in the way the ability for the time
t decisions to depend on the history of parameter realizations is modeled.

Decision Rule Formulation. In the first model, one optimizes today over all recourse actions w*(£) € RMe
and y*(£) € RVv that will be taken in each realization of £ € =Z. Under this modeling paradigm, a multi-stage
robust optimization problem with decision-dependent information discovery, originally proposed in Vayanos

et al. (2011), reads

minimize  max ZSTDt w'(€)+£7Q" y' (&)

€=
¢ teT

subject to wteﬁxi,yfgﬁxzt Vte T
w'(§) €Wy, y'(§) €V VEET

Yo Viw'(€) + W'y'(¢) < HE (21)

teT

wi (&) >wi1(¢) VteT
Yy (&) =y (w' (&) o) VteT
wi(€) =w'(w'"(§)o&) VteT

VEEZ,

where w°(¢) = w? for all £ € Z and w? is given and encodes the information available at the beginning of

the planning horizon.
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Dynamic Formulation. In the second model, the recourse decisions w' and y* are optimized explicitly
after nature is done selecting the parameters we have chosen to observe in the past. Under this modeling

paradigm, a generic multi-stage robust problem with DDID is expressible as:

min  max min max min --- min max Z(&T)TDt w' + (7T Q" y'
yley, ¢'€E yley; €PeE(wlel) JPeys yTeyr €Te3(wT—1,¢7-1)
w1€W1 ’w2€W2 ’LUSEW3 teT
w?>w! w3>w?

st. Y Viw'+ W'y <HE VemeEw™ 1€ ).
teT
(MP)
Similarly to the exogenous case, it can be shown that the two models above are equivalent as summarized

in the following theorem.
Theorem 9. Problems (21) and (MP) are equivalent.

The proof of Theorem 9 follows by applying Theorem 2 recursively and we thus omit it.

7.3. K-Adaptability for Multi-Stage Problems with Decision-Dependent Information Discovery

We henceforth propose to approximate Problem (M7P) with its K-adaptability counterpart, whereby K
candidate policies are selected here-and-now (for each time period) and the best of these policies is selected,
in an adaptive fashion, at each stage. To streamline presentation, we focus on the case where Problem (MP)
presents only objective uncertainty. Thus, the K-adaptability counterpart of the multi-stage robust prob-

lem (MP) with DDID is expressible as

min max min max .-+ min max E (€T) "D w'r + (7)) T Q" yt
ki1€EK ¢leE ko€K g2e=(wlk1 gl) krek gTEE(wT*I’kT—l,ngl) teT

st. ytF e, whteW, VteT,kek

wtke >wt bR e T k,eK, ki1 €K

> Viw't 4 Wiyttt <h  Vky,... kr €K,

teT

(MPOg)

where we have defined w®* = w? for all ¥ € K with w? =1 if and only if §; is observed at the beginning of
the planning horizon and, as in the two-stage case, we have moved the deterministic constraints to the first
stage. While Problem (MPOy) appears significantly more complicated than its two-stage counterpart, it

can be brought to a min-max-min form at the cost of lifting the dimension of the uncertainty, as shown in

the following lemma.
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Lemma 5. The K-adaptability counterpart of the multi-stage robust optimization problem with decision-

dependent information discovery, Problem (MPOy), is equivalent to the two-stage robust problem

minimize max min E (ETFT R T Db qptht 4 (gTFT k)T QP gytoht
T kp-ky EET(wl'kl,“.,wTil’kT*l) ki,...,kreEK Py
Kpyeo hp €K €

subject to  y** €Y, whreW, VteT,kek (22)

wtke > wt bR Wte T k ek, k.1 €K

S Viw'k Wiyt <h Vky,... kr €K,

teT

where 27 (w!, ... wT 1) :={¢T €= : €' €=, g eZE(w e VeeT\{1}}.

The proof of Lemma 5 follows directly by applying the proof of Lemma 1 iteratively, starting at the last
period and inverting the order of the maximization and minimization by lifting the uncertain parameters to

a higher dimensional space.

Observation 4. For any fized K and decision (z,{w"* }icr r,exc, Y™™ beTrex), the optimal objective
value of the K -adaptability problem (22) can be evaluated by solving an LP whose size is exponential in the

size of the input; and in particular exponential in T.

As the proof of Observation 4 exactly parallels that of Observation 1 for the two-stage case, we omit it.

7.4. Reformulation as a Mixed-Binary Linear Program

bk} e ke, the objective

In Observation 4, we showed that for any fixed K, @, {w"*},c7 x,ex, and {y
function in Problem (MPOf) can be evaluated by means of a polynomially sized LP. By dualizing this LP

and linearizing the resulting bilinear terms, we can obtain an equivalent reformulation of Problem (MPQO)

in the form of a mixed-binary linear program (MBLP).
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Theorem 10. Suppose YV, C {0,1} ve for all t € T. Then, Problem (MPOx) is equivalent to the following

bilinear program

minimize E E E prytvkl"‘kt

teT k€K kiek

subject to « ERET, Brrrk e RE ARk e RNe b e T ky, ... k€K
yred, wreWw, vteT, kek
e a=1

ATIBLkl — Z wl,kl 072,k1k2 Vkl c K

ko €K

ATB0FU ke qpt=Lke—1 o tikrke — Z wh ko yttlE kit € T\{1,T}, ki,...,k, €K
kiy1€K

ATk ok fqpT=Lkr -t g Thikr = oy > (D' w'™ + Q' y"™)  Vhy,... ky

teT

whke >tk Yte T k ek, ki1 €K

S Viw't Wiyttt <h Vi, kr €K
teT

that can be readily linearized using standard techniques.

8. Speed-Up Strategies & Extensions

This section proposes several strategies for speeding-up the solution of the K-adaptability counterpart of
problems with exogenous and/or endogenous uncertainty. Then, it proposes an approzimate method for

generalizing the ideas in the paper to problems with continuous recourse.

8.1. Symmetry Breaking Constraints

The K-adaptability problem (Pg) presents a large amount of symmetry since indices of the candidate poli-
cies can be permuted to yield another, distinct, feasible solution with identical cost. This symmetry yields
to significant slow down of the branch-and-bound procedure, see e.g., Bertsimas and Weismantel (2005), in
particular as K grows. Thus, we propose to eliminate the symmetry in the problem by introducing sym-
metry breaking constraints. Specifically, we constrain the candidate policies {y*},ex to be lexicographically

decreasing. For this purpose, we introduce auxiliary binary variables 2%t € {0,1}"v for all k € K\{K}



40 Vayanos, Georghiou, Yu: Robust Optimization with Decision-Dependent Information Discovery

such that 2P =1 if and only if policies y* and y**! differ in their ith component. These variables can be

defined by means of a moderate number of linear inequality constraints, as follows

k+1

S < bty

z

kk+1 k k41
Z; <2-yi -y,

VieZ, ke C\{K}. (23)

k,k+1
zi,+ > k+1

>yl —y;

k,k+1
2P >yt gk

V

k+1

The first set of constraints above ensures that if y* =y ", then P

g = 0. Conversely, the second set of
Kokt 1

7

k,k+1

7

=1 whenever y* # yFt!

(3

constraints guarantees that z . Using the variables z , the lexicographic

ordering constraints can be written as

Yk >yt = Z 2BFTY Vie T, ke K\{K}. (24)

i
i/ <i

These stipulate that if y% =y for all i <4, then y* > yF*'. Since the symmetry breaking constraints

in (23) and (24) are deterministic, they can be added to the K-adaptability problem without affecting the

solution procedure.

8.2. The Case of Continuous Recourse Decisions

Throughout Sections 4, 5, and 6, we assume that both the here-and-now and wait-and-see decisions are binary.
While the assumption that the here-and-now decisions are binary is not too restrictive, the assumption that
the wait-and-see decisions are binary may be violated in many practical settings. It this section, we propose
an approximation scheme that enables us to generalize our approach to the case of continuous recourse
decisions.

Counsider the following variant of Problem (P) where the wait-and-see decisions y are real-valued () C RNv)

and its coefficients in the objective function are deterministic.

min max min{ max E£'Czx+&€ Dw+q'y:Te+Vw+Wy< HE VEGE('w,E)}

£eE YEY | £eE(w,8)

(25)
s.t. zeX, weW,

where g € RVv. In the spirit of the linear decision rule approximation approach proposed in the stochastic
and robust optimization literature, see e.g., Ben-Tal et al. (2004), Kuhn et al. (2009), Bodur and Luedtke

(2018), we propose to restrict the recourse decisions y to those that are expressible as

y(§)=Y¢,
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for some matrix Y € {0,1}"v*~e. This model is very natural since it enables us for example to choose between
a large number of modes of operation for the wait-and-see decisions.

Under this approximation, Problem (25) is equivalent to

max €' Cx+& " Dw+q'Y¢
£€E(w,€)

minimize  max YG{OT;}&?J v | st T+ Vw+WYE<HE VE€E(w,€)
Yée) VEEE(w,€)
subject to ze X, weW.
This problem is precisely of the form (P) with the matrix W being affected by uncertainty (left-handside

uncertainty). From Remark 6, our K-adaptability approximation framework applies in this case too. It results

in a number K of linear contingency plans or operating regimes.

9. Robust Active Preference Learning at LAHSA

In this section, we propose two formulations of a preference elicitation problem that explicitly capture the
endogenous nature of the elicitation process. In the first model, we take the point of view of a risk-averse
decision-maker that seeks to maximize the worst-case utility of the item recommended at the end of the
elicitation process. In the second model, we instead take the point of view of a regret averse decision-maker

that wishes to minimize the worst-case regret of the offered item, see Section 6.4.

9.1. Motivation & Problem Formulation

The motivation for our study is the problem of designing a policy for allocating scarce housing resources to
those experiencing homelessness that meets the needs of policy-makers at LAHSA, the lead agency in charge
of public housing allocation in L.A. County. Thus, we consider the problem faced by a recommendation
system which seeks to offer a user (in this case a policy-maker) with unknown preferences their favorite item
(policy) among a finite but potentially large collection. Before making a recommendation, the system has the
opportunity to elicit the user’s preferences by making a moderate number of queries. Each query corresponds
to a choice of an item (in this case a policy). The user is asked to respond with a number between 0 (zero)
and 1 (one) with O (resp. 1) corresponding the least (resp. most) anyone could like an item. We take, in
turn, the point of view of a risk-averse and of a regret-averse recommendation system which only possesses

limited, set-based, information on the user utility function. Next, we introduce the notation in our model.
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The main building blocks of our framework are candidate items (e.g., policies with different character-
istics/outcomes) that the recommendation system can use to make queries or to offer to the user as a
recommendation. We let F C R/ denote the universe of all possible items. Each item ¢ € F is uniquely
characterized by its J features (or attributes), ¢; € F; CR, j=1,...,J, where F; denotes the support of fea-
ture j. Thus, we use the feature values of an item to define the item. If two items have the same features, they
are considered identical. We assume that |F| is finite and index items in the item set by i € Z:={1,...,1}.
We denote by ¢° € R’ the ith item in the query set, i € Z. Thus, F ={¢*|i €L}.

We propose to represent user preferences with an (unknown) utility function u: F — R and analyze the
user’s behavior indirectly with utility functions. The function u ranks each item in the universe F and
enables us to quantify how much the user prefers one item over another. We thus treat utilities as cardinal
(as opposed to only ordinal) since they provide information on the strength of the preferences rather than
just on the rank ordering of each item. We assume that the utility function is linear being defined through
u() :=u" ¢ for some (unknown) vector u supported in the set ¢ C [—1,1]”. Note that the assumption that
the utility function is linear in ¢ and w is standard in the literature. Moreover, the requirement that u be
normalized and bounded is without loss of generality since utility coefficients can be all scaled by a constant
without affecting the relative strength of preferences over items.

Before recommending an item from the set F, the recommendation system has the opportunity to make
a number @ of queries to the user. These queries may enable the system to gain information about u, thus
improving the quality of the recommendation. Each query takes the form of an item: specifically, if item 7 is
chosen, the user is asked “On a scale from 0 to 1, where 1 is the most anyone could like an item and 0 is the
least anyone could like an item, how much do you like item ¢?” The true answer to this question is given by
the (normalized) quantity

G= (u'éi+max|;]i)/(2max|d;).
Indeed, note that the maximum utility that any user with utility w € [—1,1]7 can enjoy from an item is
given by max;cz max,e(_1,1)7 %' ¢; = maxjer |¢p;||1. Similarly, the minimum utility that any user with
utility w € [~1,1]” can enjoy from an item is given by min;cz min,e[_1,1js u' ¢; = min;ez —| ¢;||1. Thus,
the normalization proposed ensures that, for any feasible user and any feasible item, the quantity ¢; lies in
the range [0, 1]. It also ensures that there is at least one utility vector resulting in an item with unit utility

and, accordingly, that there is at least one utility vector resulting in an item with 0 utility.
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Several authors have shown that oftentimes, individuals behave in seemingly “irrational” ways, see e.g.,
Kahneman and Tversky (1979), Kahneman et al. (1991), Allais (1953). In particular, they have shown that,
when describing their preferences, users may give answers that are inconsistent and could be influenced by
the framing of the question. In our framework, we cater for such inconsistencies explicitly. In particular,
we assume that (; is not directly observable and that, even if the user is asked question i, we will only
observe (; + €; where €; is additive noise perturbing the answer to the question, i.e., we only observe a
noisy version of the true normalized user utility for item i. We assume that the €;, i € Z, are independent,
identically distributed random variables with zero mean and given standard deviation. Then, in the spirit
of modern robust optimization, see e.g., Lorca and Sun (2016), we assume that € is valued in the set
&= {e eR!: 25:1 le;| < I‘} , where I' is a user-specified budget of uncertainty parameter that controls the
degree of conservatism. The uncertainty set = can be expressed as

' i + max ;]

2:={¢&c0,1) : Jue[-1,1]7, e € £ such that & =
oA suelty 2max ],

Remark 7. In the preference elicitation literature (see e.g., Boutilier et al. (2004), Bertsimas and O’Hair
(2013)), robustness is usually achieved by asking the user pairwise comparisons (e.g., “do you prefer item
A, or item B”). In the present paper, we propose an alternative way to achieve robustness (through the

parameter €).

For each i € Z, let w,; € {0,1} denote the decision indicating whether &; is observed today. Thus, w; =1
if and only if we ask the user how much he likes item i. We assume that () questions may be asked, i.e.,
Wi={we{0,1} : >, ,w;=Q}. We let y; € {0,1} denote the decision to recommend item i, i € Z, after
the subset of elements of £ that we chose to observe is revealed. We assume that only a single item can be
recommended, i.e., Y:={ye{0,1} : 3.y, =1}.

With the above assumptions, we consider two variants of the active preference elicitation problem. In the
first, we seek to select questions that will yield recommendations that have the highest worst-case (max-min)

utility, solving the robust preference elicitation problem

maximize min max min ¢’y
gc= yeY |¢cE(w,)

(WCUF)
subject to w e W.
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Problem (WCUF) is a two-stage robust problem with DDID and objective uncertainty. In the second variant,

we seek to minimize the worst-case (min-max) absolute regret of the recommendation given by

milruliergvize rgeagx 151613 56%1(&5(,2) {I?eazx & — €Ty } , (WCAR'F)
see Section 6.4 and Observation 3. In this problem, the first part of the objective computes the utility
of the best item to offer in hindsight, after the utilities €& have been observed. The second part of the
objective corresponds to the worst-case utility of the item recommended when only a portion of the uncertain
parameters are observed, as dictated by the vector w. Problems (WCU"®) and (WCARFF) can be solved
approximately using the K-adaptability approximation schemes discussed in Sections 4 and 6, respectively.
Indeed, the regret in Problem (WCAR'®) is given as the maximum of finitely many linear functions and
Theorem 6 applies. We note that |Y| =TI for both the worst-case utility and worst-case regret problems,
(WCU'®) and (WCARFF). Thus, solving the K-adaptability counterparts of (WCU'®) and (WCAR'F)
with K = I recovers an optimal solution to the corresponding original problem. Unfortunately, as I grows,
solving the [-adaptability problem becomes prohibitive and, in practice, we are forced to focus on values

of K <1, see Section 10. Yet, as we will see in our computational results in Section 10, highly competitive

solutions can be identified even with such values of K.
10. Computational Studies

In this section, we investigate the performance of our approach on a variety of synthetic and real-world
instances of the max-min utility and min-max regret preference elicitation problems introduced in Section 9.
This section is organized at follows. In Section 10.1, we describe the datasets that we employ in our exper-
iments. The experimental setup is described in Section 10.2. In Sections 10.3 and 10.4, we present our

numerical results on the synthetic and real datasets, respectively.

10.1. Description of the Datasets

Synthetic Datasets. We generate a variety of synthetic datasets with (7,.J) € {10,15,20,30,40,60} x
{10,20,30}. Each feature j of item i, ¢?, is drawn uniformly at random from the [~1, 1] interval.

Real Dataset from LAHSA. The starting point of our analysis is the HMIS (Homeless Management Infor-
mation System) dataset that our partners at LAHSA have made available to us and that pertains to the

entire L.A. County. This dataset enables us to track the full trajectories of individuals in the public housing
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system. Specifically, for each individual waitlisted, it shows all the supportive housing resources (e.g., Perma-
nent Supportive Housing -PSH—, Rapid Rehousing -RRH-) they received and the duration of their stay in
each resource. It indicates temporary housing solutions they obtained (e.g., “Shelters”) and any instances of
individuals that exited homelessness without support (e.g., they “self-resolved” or returned permanently to
their family). For each individual, it also shows several personal characteristics, e.g., gender, age, race, and
answers to the Vulnerability Index-Service Prioritization Decision Assistance Tool® (VI-SPDAT) questions.
Using this data, we use random forests to learn the probability that any given individual will exit homeless-
ness if given a particular resource or on their own (service only). Then, we design 20 candidate parametric
policies (in the form of linear or decision-tree based policies) for prioritizing individuals for housing. We
proceed as follows for each candidate policy: a) we sample a type of policy from either logistic or decision-tree
based; b) we sample a number of features from the data between 1 and 8; ¢) we learn, for each of PSH and
RRH resources, and for service only, the probability that any given individual who gets the resource will
successfully exit homelessness. Finally, we simulate the performance of the housing allocation system under
each of these policies. For each policy, we record the following characteristics: a) the number of features it
uses, and b) whether it is linear or decision-tree based, both of which serve as measures of interpretability; c)
the probability that any given individual exits homelessness, overall, by race, and by gender; d) the average
wait time, overall and by race; and e) whether the policy used protected features (e.g., race, gender, age),
giving us a total of J =23 features. Finally, we normalize the dataset by dividing each column by its infinity

norim.

10.2. Experimental Setup

Throughout our experiments, and unless explicitly stated otherwise, the K-adaptability counterparts of
Problems (WCU"®) and (WCARFF) are solved using the techniques described in Sections 4 and 6, respec-
tively. The tolerance ¢ used in the column-and-constraint generation algorithm (see Section 6.3) is 1 x 1073.
We evaluate the ¢rue worst-case utility of any given solution w*, which we denote by uy.(w*) as follows: we
fix w =w* in Problem (11) with K =1 (we explicitely set the I candidate policies to be all elements of )).
Similarly, we evaluate the true worst-case regret of any given solution w*, which we denote by ry.(w*), as
follows: we fix w = w* in Problem (CCGjeas(@, w, {y"}rex)), where we set K = I and employ all I candidate

policies {y*}rex in the set V.
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To speed-up computation further, we leverage the structure of the preference elicitation problem to rep-
resent the symmetry breaking constraints (see Section 8.1) more efficiently, as discussed in Section EC.1.1.
We also employ a conservative greedy heuristic that uses the solution to problems with smaller K to solve
problems with larger K more efficiently, see Section EC.1.2. These strategies enable us to solve problems
with large approximation parameters K (in the order of K = 10), which would not be solvable otherwise.
We investigate the role played by these speed-up strategies at the end of Section 10.3. All of our experi-
ments were performed on the High Performance Computing Cluster of our university. Each job was allotted
64GB of RAM, 16 cores, and a 2.6GHz Xeon processor. All optimization problems were solved using Gurobi

version 8.0.0.

10.3. Numerical Results on Synthetic Data

Optimality-Scalability Trade-Off. In our first set of experiments, we evaluate the trade-off between com-
putational complexity and scalability of our approach, as controlled by the single design parameter K. We
also investigate the performance of our approach in terms of both optimality and scalability relative to the
“prepartitioning” approach from Vayanos et al. (2011), see Section 3.3. As discussed in the introduction,
this is the only approach that we are aware of that is directly applicable to two-stage robust problems with
DDID. Our results on the synthetic datasets are summarized in Figures 3 and 4 for the max-min utility
problem (WCU"®) and the min-max regret problem (WCARF®), respectively. First, from the figures, we see
that our proposed approach significantly outperforms the prepartitioning approach: indeed, as indicated by
the position of the green star relative to the efficient frontier of the K-adaptability approach, our framework
consistently dominated the prepartitioning approach in terms of both solver time and optimality across all
our experiments. Second, we observe that the marginal benefit of increasing K decreases as K grows. Third,
the benefit of employing the K-adaptability approach is more pronounced as the number of questions grows
and as I' grows. This is due to the need for more “adaptability” as the dimension of the uncertainty set grows.
Finally, from the figures, it is apparent that the proposed K-adaptability approximation is more attractive
from a usability perspective that the prepartitioning approach since it only requires tuning a single desing

parameter (K) to trade-off between optimality and scalability.
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Figure 3 Optimality-scalability results for the max-min utility preference elicitation problem (WCUT®) on syn-

thetic data. Each number on the top of each facet corresponds to the number of questions Q) asked. Each
label on the right of each facet corresponds to the characteristics of the instance solved (I —J —T"). For
example, the first four facets (subfigure (a)) are labeled 20-20-0, indicating an instance with 20 items,
20 features, and I' = 0. On the first row (subfigures (a),(b), and (c)), we vary the number of items. On
the second row (subfigures (d),(e), and (f)), we vary the number of features. On the last row (subfigures
(g),(h), and (i)), we vary I". Each red dot (and cross) corresponds to a different choice of K € {1,...,10}
for the K-adaptability problem. Each blue dot (and cross) corresponds to a different breakpoint con-
figuration for the prepartitioning approach (we consider 100 different breakpoint configurations drawn
randomly from the set of all configurations with cardinality less than 10). Whether a point is indicated
with a dot or a cross depends on whether it is on the efficient frontier of the problems that resulted in
the highest worst-case utility for the given time budget. The green star summarizes the performance
of the prepartitioning approach: its solver time is calculated as the cumulative time needed to solve all
prepartitioning problems and its worst-case utility corresponds to the best worst-case utility achievable

by any breakpoint configuration.
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Figure 4  Optimality-scalability results for the min-max regret preference elicitation problem (WCARF®) on
synthetic data. The facet labels, graphs, shapes, lines, and colors have the same interpretation as in

Figure 3.

Performance Relative to Random FElicitation. In our second set of experiments, we evaluate the benefits
of computing (near-)optimal queries using the K-adaptability approximation approach relative to asking
questions at random. Thus, we compare the ¢rue performance of a solution to the K-adaptability problem to
that of 1000 questions drawn uniformly at random from the set V. Performance is measured in terms of the
true objective value (true worst-case utility and true worst-case regret, respectively) of a given solution. The
results are summarized on Figures 5 and 6 for the max-min utility and min-max regret cases, respectively.
From the figures, it can be seen that the probability that the K-adaptability solution outperforms random
elicitation converges to 0 as K grows. From Figure 5, we observe that in the case of the max-min utility
problem, for values of K greater than approximately 5, the K-adaptability solution outperforms random
elicitation in over 90% of the cases. That number increases to over 99% for K greater than about 8. From

Figure 6, we observe that in the case of the min-max regret problem, higher values of about K =8 are
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Figure 5 Results on the performance of the K-adaptability approach relative to random elicitation for the max-
min utility preference elicitation problem (WCUF®) on synthetic data. The dashed red line corresponds
to the objective value of the K-adaptability problem. The red line corresponds to the true worst-
case utility of the K-adaptability solution. The blue line represents the percentage of time that the
true worst-case utility of a random solution exceeded the true worst-case utility of the K-adaptability

solution.

needed to ensure that the K-adaptability solution outperforms random elicitation over 75% of the time. It
is important to emphasize here that evaluating the true performance of a given solution is only possible for
moderate problem sizes since it requires evaluating the objective value of the K adaptability counterpart for
K =1, see Section 10.2. We also note that, to the best of our knowledge, evaluating uy(w*) and ry.(w*) is
only possible thanks to our proposed approach in this paper.

Comparison Between Max-Min Utility & Min-Max Regret Solutions. In the first two sets of experiments,
we observed that the max-min utility problem, Problem (WCU PE), is more scalable than its min-max regret
counterpart, Problem (WC.ARPE). In our third set of experiments, we investigate whether there are benefits

in employing the min-max regret solution relative the max-min utility solution. For this reason, we study
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Figure 6 Results on the performance of the K-adaptability approach relative to random elicitation for the min-
max regret preference elicitation problem (WCARF®) on synthetic data. The dashed red line corre-
sponds to the objective value of the K-adaptability problem. The red line corresponds to the true
worst-case regret of the K-adaptability solution. The blue line represents the percentage of time that
the true worst-case regret of a random solution was lower that the true worst-case regret of the K-

adaptability solution.

the true worst-case utility and true worst-case regret of solutions to the K-adaptability counterparts of
Problems (WCU®) and (WCARFE), respectively, on a synthetic dataset with I = 10 items and J = 10
features (I' =0). The results are summarized in Table 1. From the table, it can be seen that, across all
question budgets, employing the min-max regret criterion results in solutions that have far lower worst-case
regret while simultaneously being competitive in terms of worst-case utility.

Evaluation of Symmetry Breaking € Greedy Heuristic. For our fourth set of experiments, we solved the
max-min utility problem (WCU"F) on a synthetic dataset with I =40 items and J = 20 features (I' = 0)
using three different approaches: the K-adaptability counterpart, the K-adaptability counterpart augmented

with symmetry breaking constraints, and the greedy heuristic approach, see Section EC.1.2. We varied K
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Table 1 Comparison between max-min utility and min-max regret solutions on a synthetic dataset with I =10
items and J = 10 features (I'=0). The max-min utility solution w} and min-max regret solution w; are computed
using the 10-adaptability counterparts of Problems (WCUF®) and (WCARFE), respectively. The relative loss in
true utility refers to the drop in worst-case utility experienced by employing the min-max regret rather than
max-min utility solution, computed as (Uwe(w}) — Uwe(Wy))/Uwe(wy). Similarly, the relative improvement in true
regret refers to the improvement in worst-case regret experienced by employing the min-max regret rather than

max-min utility solution, computed as (rwe(wy) — rwe(wy))/rwe(wy).

Max-Min Utility Solution | Min-Max Regret Solution | Relative Loss | Relative Improvement
Q True Utility | True Regret | True Utility | True Regret | in True Utility in True Regret
2 0.41 0.47 0.36 0.40 12.7% 14.8%
4 0.44 0.40 0.40 0.30 7.9% 24.3%
6 0.44 0.26 0.44 0.18 0.0% 29.9%
8 0.44 0.30 0.44 0.07 0.0% 76.5%

Table 2 Summary of evaluation results of symmetry breaking constraints and greedy heuristic approach on a
synthetic dataset with I =40 items and J = 20 features (I' = 0). The average speed-up factor in the solution of the
max-min utility problem (WCUF®) due to symmetry breaking constraints is computed by averaging over K the
ratio of the solver time of the MILP without and with symmetry breaking constraints. Similarly, the average
optimality gap of the greedy solution is computed by averaging over K the optimality gap of the greedy heuristic

solution relative to the objective value of Problem (WCUF®).

Number of Questions @ ‘ 2 ‘ 4 ‘ 6 ‘ 8 ‘

Average Speed-Up Factor of Symmetry Breaking | 13.2 | 4.7 | 43 | 74
Average Optimality Gap of Heuristic 5.4% | 3.8% | 3.8% | 3.7%

from 1 to 10, and varied @ in the set {2,4,6,8}. The results are summarized on Table 2. From the table, we
observe that the symmetry breaking constraints speed-up computation by a factor of 4.3 to 13.2 on average,
depending on the number of questions asked. As seen in the table, the heuristic approach is near-optimal in

all instances with a gap smaller than 6% in all cases. Detailed numerical results are provided in Section EC.7.

10.4. Numerical Results on the Real Dataset from LAHSA

Optimality-Scalability Trade-Off. In our fifth set of experiments, we evaluate the trade-off between com-

putational complexity and scalability of our approach on the real dataset from LAHSA, see Section 10.1 for
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Figure 7 Optimality-scalability results for the min max regret preference elicitation problem (WCA’RPE) on the
LAHSA data. The facet labels, graphs, shapes, lines, and colors have the same interpretation as in

Figure 4.

details on this data. We solve both the max-min utility and min-max regret problems as @) and I' are varied
in the sets {2,4,6,8} and {0,0.25,0.5}, respectively. The results are summarized in Figure 7. In this instance
of the max-min utility problem, Problem (WCU"F), static policies (K = 1) are always optimal, with objec-
tive value 0.0265703, 0.0, and 0.0, for I' =0,0.25, and 0.5, respectively. Thus, there is no benefit in asking
any question and the performance of the K-adaptability and prepartitioning approaches are comparable.
Intuitively, this is due to the fact that, in this dataset, the worst-case utility vector u remains unchanged
after asking any one question. On the other hand, the K-adaptability approach significantly outperforms
the prepartitioning approach in this instance of the min-max regret problem, Problem (WC.ARPE), and
static policies are very sub-optimal (worst-case regret equal to 10.5%, 36%, and 60% for I' =0,0.25, and 0.5,
respectively). The prepartitioning approach performs comparably to static policy and only shows a small
improvement in the case I' = 0.5. On the other hand, with the K-adaptability approach, the worst-case
regret drops to 2.1%, 26.6%, and 51.4%, for I' =0,0.25, and 0.5, respectively (for @ = 8). Note that all the
K-adaptability solutions to the min-max regret problem are optimal in the worst-case utility problem so
the improvement in regret comes at no cost to worst-case utility. This experiment shows the strength of the
K-adaptability approach; it also showcases the power of the min-max regret problem (WCAR'E).
Performance Relative to Random FElicitation. In our final set of experiments, we evaluate the benefits
of computing (near-)optimal queries using the K-adaptability approximation approach relative to asking

questions at random on the real dataset from LAHSA. Similarly to the synthetic case, we compare the
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Figure 8 Results on the performance of the K-adaptability approach relative to random elicitation for the min-
max regret preference elicitation problem (WCARF®) on the LAHSA dataset. The facet labels, graphs,

shapes, lines, and colors have the same interpretation as in Figure 6.

true performance of a solution to the K-adaptability problem to that of 50 questions drawn uniformly at
random from the set WW. We only consider a moderate number of samples in this case since evaluating the
true regret on this larger dataset is computationally intractable. We measure performance in terms of the
true worst-case regret of a given solution. The results are summarized on Figure 8. From the figure, it can
be seen that the probability that the K-adaptability solution outperforms random elicitation converges to
0 as K grows. We observe that, for values of K greater than approximately 4, the K-adaptability solution

outperforms random elicitation in over 90% of the cases.

Notes

!See https://www.mturk.com/.
2See https://www.hudexchange.info/programs/hmis/.
3See https://wuw.lahsa.org/.

4See e.g., https://www.ibm.com/analytics/cplex-optimizer and https://www.gurobi.com/.

®See https://wuw.orgcode . com/.
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E-Companion

EC.1. Strategies for Speeding-up Computations in Section 10

In this section, we detail several strategies for speeding-up computations that we have employed in our

analysis in Section 10.

EC.1.1. More Efficient Representation of the Symmetry Breaking Constraints

In Section 8.1, we provided symmetry breaking constraints applicable to any K-adaptability problem. The
active learning problems presented in Section 9 possess an attractive structure in that any feasible recourse
decision (a recommended item) must have exactly one non-zero element. This observation enables us to
enforce lexicographic ordering of the policies without needing auxiliary binary variables z***! which helps
substantially reduce the size of the resulting problem and speed-up computation, see Section 10.

First, note that since having duplicate candidate policies does not improve the objective value and since
|Y| =1, duplicate policies can be excluded (thereby strengthening the associated formulation) by means of

the constraints

Sy <1 Vier, (EC.1)

ke

provided K < I. Second, provided constraints (EC.1) are imposed, the lexicographic ordering constraints

reduce to

yf >yt =Y uh =) Yl VieZ ke K\{K}. (EC.2)

i <i i/ <i

This follows from the fact that, if (EC.1) holds, then policies y% and y%5*" are identical for all 7/ < i if and

il

only if y% =y~ =0 for all i/ <. Indeed, if there exists i’ < i such that either y% =1 or y5™' =1, then it

must hold that y% # y5"". Thus, y5 and y};*" are identical for all ' <iif and only if 3", _,y5 +>,_ yb™' =
0, in which case we require y* > yF*'. This is precisely the constraint imposed in (EC.2). Adding the
symmetry breaking constraints (EC.1) and (EC.2) to the K-adaptability counterpart of Problem (WCU"F)
or Problem (WCARF) breaks the symmetry in the candidate policies. At the same time, it results in a far
more efficient formulation (smaller number of decision variables and constraints) than adding the generic

symmetry breaking constraints from Section 8.1.



ec2 e-companion to Vayanos, Georghiou, Yu: Robust Optimization with Decision-Dependent Information Discovery

Algorithm 2: Heuristic algorithm for solving the K-adaptability counterpart of a problem; adapted

from Subramanyam et al. (2017).

Inputs: Instance of Problem (PO), (P), or (PO"WE): K-adaptability parameter K;

Output: Conservative solution (z,w,{y*}.cx) to the K-adaptability counterpart of the input instance
(POk), (Px), or (PORVY), respectively);

for ke{l,...,K} do

if k=1 then

Solve the the k-adaptability counterpart of the input instance (using its MBLP reformulation);

Let (z*,w*,y*') denote an optimal solution;

else
Solve the the k-adaptability counterpart of the input instance (using its MBLP reformulation)

with the added constraints that y~=y** for all k€ {1,...,k—1};

Let (z*,w*,{y**}*_,) denote an optimal solution;

end

end

Result: Return (z*, w*, {y*"}.ex)-

EC.1.2. Heuristic K-Adaptability Solution Approach

In addition to solving the K-adaptability counterpart of the active preference learning problems (WCUPE)
and WCARFF) directly (using their MBLP reformulation), we also employ a heuristic approach, as detailed
in Algorithm 2. A variant of this approach has been previously used by Subramanyam et al. (2017). This
algorithm returns a feasible but potentially suboptimal solution to the K-adaptability counterpart of the

problem to be solved.

EC.2. Proofs of Statements in Sections 2 and 3

Proof of Theorem 1 Let « and y(-) be defined as in the premise of claim (i). Then, © € X and, for each
&€ € =, we have that y(&) € Y and Tz + Wy(€) < HE. Thus, (x,y(-)) is feasible in Problem (1). Moreover,
it is readily checked that the objective value (x,y(-)) attains in Problem (1) is equal to the objective value

attained by x in Problem (2). We have thus shown that Problem (1) lower bounds Problem (2) and that if «
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is optimal in Problem (2), then the pair (x,y(:)) is feasible in Problem (1) with the two solutions attaining
the same cost in their respective problems.
Next, let (x,y(-)) be defined as in the premise of claim (i), i.e., let it be optimal in Problem (1). The

here-and-now decision « is feasible in Problem (2) and, for each £ € =, we can define
y'(€) € argmin {{'Cx+€'Qy : Tx+Wy< HE}.
yey

By construction, € X'. Moreover, by definition of y'(-) and by feasibility of (,y(-)) in Problem (1) it holds

that
max £ Cx+€'QyY'(€) < max £ Cx+£"Quy(8).

Thus,  is feasible in Problem (2) with a cost no greater than that of (a,y(-)) in Problem (1). We have thus
shown that Problem (2) lower bounds Problem (1) and that if (z,y(-)) is optimal in Problem (1), then « is
feasible in Problem (2) with the cost attained by @ in Problem (2) being no greater than the cost of (x,y(-))
in Problem (1).
We conclude that the optimal costs of Problems (1) and (2) are equal, and that claims (3) and (i) hold.
]
Proof of Theorem 2 Let (x,w), y'(:), and y(-) be defined as in the premise of claim (i). Then, x € X,
w € W, and for each § such that § = w o€ for some & € =, we have that y'(§) € Y and Tz + Vw +Wy' () <
HE¢ for all € € Z(w,d). We show that (x,w,y(-)) is feasible in Problem (3). Fix any & € Z. First, y(£) € V.
Second, we have

Te+Vw+Wy) =Te+Vw+Wy'(wof) < HE,

where the equality follows by definition of y(-) and the inequality follows from the fact that & € Z(w,wo &)
and from the definition of y'(-). Fix £ € Z: wo€& =wo¢’. Then, y(&) =y(¢’'), so that the decision-dependent
non-anticipativity constraints are also satisfied. Since the choice of € € = was arbitrary, (,w, y(-)) is feasible

in Problem (3). The objective value attained by (x,w) in Problem (P) is given by

max E'Cz+e ' Dw+E'Qy' (wo€) = max E'Cz+e ' Dw+E'Qy(E), (EC.3)
E€E, E€E,
£€E(w,8) ¢eE(w,€)

where we have grouped the two maximization problems in a single one and where the equality follows from

the definition of y(-). The value attained by (@, w,y(:)) in Problem (3) is

max §'Ca+¢ Dw+€ Qule). (EC.4)
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Since {£ €E(w,€) : £€E} = Z, it follows that the optimal objective values of the Problems (EC.3)
and (EC.4) are equal. We have thus shown that Problem (3) lower bounds Problem (P) and that if (z,w) is
optimal in Problem (P), then the triple (@, w,y(+)) is feasible in Problem (3) with the two solutions attaining
the same cost in their respective problems.

Next, let (z,w,y(-)) be defined as in the premise of claim (i), i.e., let it be optimal in Problem (3). The

here-and-now decision (z,w) is feasible in Problem (P) and, for each £ € =, we can define

y'(€) € argmin { max £ Czx+& Dw+éQy:Tx+Vw+Wy< HE V&eE(w,{)}.
yey £€E(w,E)

By construction, (x,w) € X x W. Moreover, it holds that

max max £ Cz+& Dw+& Qy(€)
£€E £€E(w,§)

— max € Ca+E Dw+E QY
< max £ Cz+E Dw+Qy(f).
Thus, (@, w) is feasible in Problem (P) with a cost no greater than that of (x,w,y(-)) in Problem (3).
We have thus shown that Problem (P) lower bounds Problem (3) and that if (x,w,y(-)) is optimal in
Problem (3), then (@, w) is feasible in Problem (P) with the cost attained by @ in Problem (P) being no
greater than the cost of (x,y(:)) in Problem (3).
We conclude that the optimal costs of Problems (3) and (P) are equal, and that claims (i) and (%)

hold. O

Proof of Lemma 1 Fix x € X, w e W, and y*, k € K, and £ € Z. It suffices to show that the problems

rkni)rcl { max £ Czx+& Dw+é'Qy* : Tx+Vw+Wy*<HE V&eE(w,S)} (EC.5)
€ £€E(w,E)
and

max min {(¢*)"Cx+ (") ' Dw+ (£")"Qy" : T+ Vw+Wy* <HE¢"} (EC.6)

gFeE(w,€), kek keK
have the same optimal objective.
Problem (EC.5) is either infeasible or has a finite objective value. Indeed, it cannot be unbounded below
since, if it is feasible, its objective value is given as the minimum of finitely many terms each of which is
bounded, by virtue of the compactness of the non-empty set =Z(w, ). Similarly, Problem (EC.6) is either

unbounded above or has a finite objective value. It cannot be infeasible since Z(w, &) is non-empty.
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We proceed in two steps. First, we show that Problem (EC.5) is infeasible if and only if Problem (EC.6)
is unbounded above, in which case both problems have an optimal objective value of +o00. Second, we show
that if the problems have a finite optimal objective value, then their optimal values are equal.

For the first claim, we have

Problem (EC.5) is infeasible
& PkeK : T+ Vw+Wyt <HE VECE(w,E)
o Vkek, EF cE(w,€) : T+ Vw+Wy* £ HE
< Problem (EC.6) is unbounded.

For the second claim, we proceed in two steps. First, we show that the optimal objective value of Prob-
lem (EC.6) can be no greater than the optimal objective value of Problem (EC.5). Then, we show that the
converse is also true.

For the first part, let k be feasible in Problem (EC.5) and {£*},cx be feasible in Problem (EC.6). The

objective value attained by & in Problem (EC.5) is given by

max £ Czx+& Dw+€'Q yr‘.
£€E(w,E)

Accordingly, the objective value attained by {£*},cx in Problem (EC.6) is given by

min {(ék)TC:c +(E Dw+ (€N Qy* : Te+Vw+Wy* < Hé’“} .

ke

Next, note that

min {(ék)TCas—i— (ENTDw+ () Qy* : Te+Vw+Wy* < Hék}

kex

IN

(E)TCx+(E) Dw+ ()7 Qy"

< max ¢ Cz+¢& Dw+¢&'Qyr,
£€E(w,€)

where the first inequality follows by feasibility of % in Problem (EC.5) since £€* € Z(w,€) and the second
inequality follows by feasibility of £ in the maximization problem. Since the choices of k and {£*},cx were
arbitrary, it follows that the optimal objective of Problem (EC.5) upper bounds the optimal objective of
Problem (EC.6).

For the second part, we show that the converse also holds. For each k € IC, let

€ cargmax €' Cx+ €& Dw+€"Qy".
£€E(w §)
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Then, the optimal objective value of Problem (EC.5) is expressible as

min {(") ' Cax+ (") Dw+ (") ' Qy" : Te+ Vw+Wy* <HE VE€E(w,§)}. (EC.7)

ke

Since £€** € Z(w, €), the solution {£"*},cx is feasible in Problem (EC.6) with objective

min {(€"*) ' Cz+ (") Dw+ (") Qy" : Te+Vw+Wy" <HE"*}. (EC.8)

ke

If the optimal objective values of Problems (EC.7) and (EC.8) are equal, then we can directly conclude that
the optimal objective value of Problem (EC.6) exceeds that of Problem (EC.5). Suppose to the contrary
that the optimal objective value of Problems (EC.8) is strictly lower than that of Problem (EC.7). Then,
there exists (at least one) k € KC that is feasible in (EC.8) but infeasible in (EC.7) and for each such k, there
exists €5 € 2(w, €) such that Tz + Vw + Wy* & HEM' . We can construct a feasible solution {£€%*},cx to

Problem (EC.6) with the same objective as Problem (EC.7) as follows:

o g ifk T+ Vw+ Wyt <HE VEeE(w,§),

£ else.
Indeed, the objective value attained by {€**},cx in Problem (EC.6) is
min {(€) Ca+ () Dw+ () Qy" : To+Vw+Wy" < HE |
= min {(€*) " Ca+ () Dw+ () Qy" : To+Vw+ Wy <HE VEcZ(w,€)}
= min {(&"*) Ca+ (") Dw+ (") Qy" : Tx+Vw+Wy" < HE VE€Z(w,€)},

ke

where the first equality follows by construction since
{(keK : Te+Vw+Wy* <H¢ VEcE(w,€)} = {keK : Te+Vw+Wy* < HE )
and the second equality follows since
Ehr =g VheK : Te+Vw+ Wy <HE VEeZ(w,).

We have thus shown that the optimal objective value of Problem (EC.6) is at least as large as that of
Problem (EC.5).
Combining the first and second parts of the proof, we conclude that Problems (EC.5) and (EC.6) have

the same optimal objective values, which concludes the proof. [
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EC.3. Proofs of Statements in Section 4

Proof of Lemma 2 Since Problem (POg) is equivalent to Problem (9) (by Lemma 1), it suffices to show
that Problems (9) and (10) are equivalent.

First, note that for any choice of w € W, the set =¥ (w) is non-empty. If there is no x € X', w € W, and
y € Y such that Tx + Vw+ Wy < h, then Problem (10) is infeasible and has an optimal objective value of
~+00. Accordingly, Problem (9) also has an objective value of 400 since either its outer or inner minimization
problems are infeasible.

Suppose now that there exists € € X', w € W, and y € Y such that T+ Vw+ Wy < h. Then, Problems (9)
and (10) are both feasible. Let (x,w,{y}rex) be a feasible solution for (10). Then, it is feasible in (9) and
attains the same objective value in both problems since all second stage policies y*, k € K, satisfy the second-
stage constraints in Problem (9). Conversely, let (x,w,{y}ircx) be feasible in Problem (9). Since Z* (w)
is non-empty, there must exist &* € K such that Tz + Vw + Wy*" < h (else the problem would have an
optimal objective value of +0o and thus be infeasible, a contradiction). If Tx + Vw + Wy* < h for all k € K,
then (x,w,{y}rex) is feasible in (10) and attains the same objective value in both problems. On the other

hand, if T+ Vw + Wy* > h for some k € K, define
y* fTz+Vw+Wy*<h

k*

Yy else.

Then, (x,w,{Y}rex) is feasible in (10) and attains the same objective value in both problems. O
Proof of Observation 1 Fix K € N and (z,w,{y*}rcx) such that x € X, w e W, y* € Y. Assume,
w.l.o.g. (see the Proof of Lemma 2) that Tz + Vw + Wy* <h for all k € K. From Lemma 2, the objective
value of (POf) under this decision is equal to

maximize IknEl)ICl {(¢) Cx+ ()" Dw+(£")TQy"}

subject to £€E,€YcE kek

wotk=wo€ Vkek.

We can write the problem above in epigraph form as an LP:
maximize T
subject to TER,£€E, EFcEkek
T<(€)Cax+(8F)' Dw+(£")'Qy* Vkek

wotfF=wof& Vkek.
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For any fixed K, the size of this LP is polynomial in the size of the input. O

Proof of Theorem 3 For any fixed (@, w,{y*}rex), we can express the inner maximization problem

in (10) in epigraph form as

maximize T

subject to TER, E€RNe, gF c RV ke K

T<(Cx+Dw+Qy")"¢" Vkek
AE<Db
AP <b VkeK

wotfF=wo€ Vkek.

Strong LP duality (which applies since the feasible set is non-empty and since the problem is bounded by

virtue of the boundedness of Z) implies that the optimal objective value of this problem coincides with the

optimal objective value of its dual

minimize

subject to

bTﬁ+ZbTﬂk

ke
acRE, BeRE, BYeRE, v*eRYe kek
e'a=1
AT +wov* =0, (Cx+ Dw+ Qy*) Vkek

ATB:ZwO’y’“.

ke

We can now group the outer minimization with the minimization above to obtain

minimize

subject to

bTB+ e b B
zeX,weW,y*e), kek
acRE, BeRE, BYeRE, v*eRYe kek
e a=1
AT +wov* =0, (Cx+ Dw+Qy*) Vkek
ATB=) wo~*
keK

Tr+Vw+Wy*<h Vkek.
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The result now follows by replacing the bilinear terms w ov*, oz, a,w, and oy, y* with auxiliary variables
F* eRNe, g e RY", w* € Rf, and y* € RT’ such that

Fr=woy* & F <A+ M(e—w), ¥ < Mw, ¥* > -Mw, ¥* >~ — M(e —w),
T"=aur & T'<z, T <ae, T">(a,—1)e+wz,

k k

T =y & T <y 7y <oe 7> (ap—1)e+y",

where in the last three cases we have exploited the fact that @, w, and y* are binary and that a* € [0,e]. O
EC.4. Proofs of Statements in Section 5

Proof of Theorem 4 The proof is a direct consequence of Theorem 3 in Hanasusanto et al. (2015).
Indeed, the authors show that evaluating the objective function of Problem (2) is strongly NP-hard. Since
Problem (2) can be reduced in polynomial time to an instance of Problem (P) by letting D =0, V =0, and
w = e, this concludes the proof. [

The proof below is a generalization of the proof of Proposition 1 in Hanasusanto et al. (2015) that operates
in the lifted uncertainty and decision spaces. Despite this key difference, the proof idea carries through.
Proof of Proposition 1 Fix &, w, and {y*}rcx. We show that {E% (w,£) }ee is a cover of =X (w), i.e.,

that 2% (w) =, E%(w, £). Let {£*}rex € % (w) and define

0, if Te+Vw+Wy* < H¢*
L, = vk e K.

min{¢e{l,...,L} : [ Te+Vw+Wy*],>[HE"],}, else.
Then, {&*}rex € EX(w, £). Moreover, by definition, we have Z¥ (w,£) C E¥(w) for all £ € L. Therefore

{EX(w, £) }oer is a cover of ZF (w). It then follows that

max min {(¢*)"Cx+ ()" Dw+ (£")"Qy" : T+ Vw+Wy* <HE"}
{€* e €EX (w) kek
= max min MNTCz+ ()" Dw+ (€57 P T+ Vw+ Wyt < HE"
{Ek}kEKEU£eLEK(UJ7£) keK {(€ ) (£ ) (€ ) Qy y — 6 }
= max max min {(gk)TCw—l—(ﬁk)TDw—i—({k)TQ y* T+ Vw+Wy* gHgk}.

LeL {£F}pe €EN (w,8) keEK

The definition of =¥ (w, £) implies that £, = 0 if and only if Tz + Vw + Wy"* < H¢*. This concludes the
proof. O

Proof of Theorem 5 The objective function of the approximate problem (12.) is identical to

max max min {Z/\k [({k)TCw—F({k)TDw-F(Ek)Tka]},

LeL {gh}pex€EE (w,e) AEAK(E) ex
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where Ag(£) ;== {AeRY : e"A=1, A, =0Vk€K:£,#0}. Note that Ax(£) =0 if and only if £> 0. If

EX(w,€) =0 for all £€ L, then the problem is equivalent to

max max min {Z)\k [(gk)TCer(gk)TDer(gk)Tka]}7

LCOL (&R} e €EE (w,e) AEAK(E) ex

and we can apply the classical min-max theorem (since Ax(€) is nonempty for all £ € L) to obtain the

equivalent reformulation

max min A TCw—l— NT D aw + (65)7 k 7
LcOL XeAg(e) {Ek}ke)ce:K(w ) {kEZ’C k (£ ) (5 ) Qy ]
which in turn is equivalent to
min max A TCa:—i— MNTDw+ (€57 LI
A(Z)ZG%IZ(E) LcdL {gk}kEKE:K(u} ) {kez)c k (E ) (€ ) Qy ]
€

If, on the other hand, X (w, £) # @ for some £ € L, then the objective function in (12.) evaluates to +oo.

Using an epigraph reformulation, we thus conclude that (12.) is equivalent to the problem

minimize T

subject to z€ X, weW, y* €)Y, kek

TER, A£)eAk(L), L€ OL (EC.9)
=Y MO [(€)Ca+ () Dw+(€)Qyt] VLEIL, {€ ek EEE (w,8)
2K (w, ) =) Vee L.

The semi-infinite constraint associated with € € 9L is satisfied if and only if the optimal value of

maximize Z)\k TCCB+(€k)TDw+(£k)TQ yk]

ke

subject to € €RNe, EF cRNe ke K

AE<D

AEF<b Vkek
Tx+Vw+ Wyt < HE VkeK:£,=0
[Tz +Vw+Wy*|, >[HE, +e¢ VkeK:£,#0

wolF=wof Vke K
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does not exceed 7. Strong linear programming duality implies that this problem attains the same optimal

value as its dual problem which is given by

minimize b7 (a + Z a’“) — Z (Tz+Vw+Wy*) g" + Z ([T:c +Vw+ Wy’“]ek — e) Vi
IR = %
k= k

subject to aeRY, o*eRE, B*eRL, ke, yeRE, n* eRYe, ke

A-rcxzzz:won’C

Kek
ATa"—H "B +won*=X,(0)[Cz+ D w+Qy"] VEeK:£,=0
ATa" +[Hlp v +won* =X, (0)[Cx+ D w+Qy"] VkeK: £, #0.

Strong duality holds because the dual problem is always feasible. Indeed, one can show that the compactness
of = implies that {ATa: @ >0} =R ¢. Note that the first constraint set in Problem (13) ensures that the
optimal value of this dual problem does not exceed 7 for all £ € 0L.

The last constraint in (EC.9) is satisfied for £ € £, whenever the linear program

maximize 0

subject to €€ RNe, gF e RNt ke K
AE<D
ALF<b Vkek
[Tz +Vw+Wy*|, >[HE |, +e Ve
wolF=wo& Vke K

is infeasible. The dual to this problem reads

minimize  b" (a + Z ak> + Z ([Tw +Vw+ Wyk]ek — e) Yk

ke kel

subject to  a€RE, aF eRE keK, vyeRE, n* eRY ke Kk
Ala= Z won®
kex
ATar +[Hly v, +won* =0 Vke K.
The feasible set of this dual is a cone and thus feasible (set =0, n* =0, v, =0, k € K). Therefore, strong
LP duality applies and the primal is infeasible if and only if the dual is unbounded. Since the feasible set of

the dual is a cone, the dual is unbounded if and only if there exists a feasible solution attaining an objective

value of —1. O
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Proof of Observation 2 Suppose that we are only in the presence of exogenous uncertainty, i.e., w =e,

D =0, and V =0. Then, Problem (13) reduces to

min 7
s.t. TeR,zeX, y*e), kek
af) eRE, o*(£) eRE, ke, v(£) eRE, n*(£) eRYe, ke K, Le L

)‘(E) € AK(E)a /Bk(e) € Riv k € ’Ca

=Y 0"

ke

ATok(0)— HTB* )+ 0" () = \(£)[Cz+Qy*] YkeK:£,=0

AT (€) + [He () + 0 () =\ (0) [Cz+ Qy*] VEEK: £ #0 VECOL  meao)
T>b" <a(£) —i—Zak(E)) - > (Tz+Wy*) 8*(e)
+ Z ([T$+Wyk}lk —e) "‘/k(e)
6550
=Y 0"
ATk (€) + [Hlg, 07 (£) +1*(£) =0 VkeK VeeL.,.
! (a(éHZa’“(ﬁ)) +3° ([T +Wy'], — ) w@) < -1

Since n*(£€) is free for all k € K and £ € L, the first set of constraints associated with £ € 9L in (EC.10) is

equivalent to

T<a<e>+zak<e>)—zﬂw<e> S (Hln (0~ Co+ A (0)- Q'

keK keK: keK: ke
£,=0 £, 70

where we have exploited the fact that A(£) > 0 and e " A(€) = 1. Similarly, the first set of constraints associated

with £€ £, in (EC.10) is equivalent to

AT <a(£)—|—2a ) +Z Je, V(£

kel ke
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We conclude that, in the presence of only exogenous uncertainty, Problem (13) reduces to

min T
s.t. TER, zeX, y*e), kek

al)eRY, v(£) eRE, LeL

AE) € A(8), BH(E) € R, KK,
k; k; ;;c veeor (ECI
£,=0 2,70
T>bTal)~ Y (Tz+WyH) B @)+ Y ([Ta: Wy, - 6) 71 (£)
keK: keK:
£,=0 £, 720
+Z le,vi (£
kek veeLl,,
bTa(l)+ > ([Tw+Wy‘“]ek —e)mle) <1
kex

where we use the change of variables a(£) < (c(€) + >, . & (£)). We thus recover the MBLP formulation

of the K-adaptability problem (6) from Hanasusanto et al. (2015), which concludes the proof. O

EC.5. Proofs of Statements in Section 6

Proof of Observation 3 Suppose that X :={x:e"z=1}, W:={w:e'w=1},and Y:={y:e'y=1}.
Then,

max ECx'+¢'Dw+£'Qy = max {€TCe;+€"De; +£7Qe,}.

s.t. xT'eX,weWw, ye)y
Thus, in this case, the objective function is expressible in the form (14) and the claim follows. An analogous
argument can be made if C=0, D=0,or Q=0. 0O

Proof of Lemma 3 It suffices to show that, for any fixed x € X, weW, y* €Y, k€K, and £ € E,

min  max_ {max ECz+e'D'w+€'Q" y’“} (EC.12)
kex ¢cE(w,€) 1€T
and
max  min {mearx ' Cz+ (") ' D'w+(¢M'Q y’“} (EC.13)

gFeE(wE), keX
keX
are equivalent.
First, note that Problem (EC.12) is always feasible and has a finite objective by virtue of the compactness

of Z(w, €) which is non-empty. Similarly, Problem (EC.13) is always feasible and has a finite objective.
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We now show that both problems have the same objective. Let k and {€*},ex be feasible in (EC.12)

and (EC.13), respectively. The objective value attained by k in Problem (EC.12) is

max {max E'Cxz+¢ ' D'w+e'Q’ yf“} .

¢cE(w,g) [ €T

Accordingly, the objective value attained by {£€*},cx in Problem (EC.13) is

. FkN T i i\ T i EEN T ik
win {imax (€)C a4 (€) D w+ €)' Qv
Note that
min < max (ék)TCiw+(£~k)TDiw+(ék)TQi »
kek | ieZ Y
~ T . ~ T L A
< max (€9 C'z+(€) D'w+(€) Q¢
< max max £ Cz+& Dw+¢ Qy.
¢eE(w,g) €T

Since the choice of k € K and €* € ZE(w,€) was arbitrary, it follows that Problem (EC.12) upper bounds

Problem (EC.13).

Next, we show that the converse also holds. Let

&F* € argmax {mazx £'C'z+€ D'w+€'Q’ yk}

¢eE(wg \ €

Then, the optimal objective value of Problem (EC.12) is expressible as

min {max (ék’*)TCi T+ (€k*)TDZ w+ (ﬁk*)TQl yk} .

ke i€

The solution {€"*},cx is feasible in (EC.13) with objective

: ks\ T i ko T yi k)T )ik
min {rgleazx (&) C'la+(6") D'w+() Q'y }
Thus, the optimal objective value of Problem (EC.13) upper bounds that of Problem (EC.12).

Combining the two parts of the proof, we conclude that Problems (EC.12) and (EC.13) are equivalent. [

Proof of Theorem 6 The objective function of Problem (15) is expressible as

max max min {max ETC e+ Dw+€"Q° yk} .

£€E  ¢reE(w,€),kek kEK i€T
Using an epigraph reformulation, we can write it equivalently as
maximize T
subject to TER, £€E, £F e E(w,€), ke (EC.14)

7 < max (£*)Clz+(&") D'w+ (€5 Q' y* Vkek.

i€L
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Noting that, for each k € K, the choice of i € K can be made, in conjuction with the choice in 7, €, and &,

k € K, Problem (EC.14) can be written equivalently as

maximize max T
ix €T, keK

s.t. TER, ECE ¢FecE(w,€),Vkek (EC.15)
T < (§N)TCH x4 (6 D w+ (8)TQM y* VkeK.
Dualizing the inner maximization problem yields

. . - _—
maximize min b'B+> 0B
s.t. acRE, BeRE, BFeRE, A*eRY, VkeK

efa=1 (EC.16)

ATBF+wox* =y (C*x+ D*w+ Q*y*) Vkek

ATB3= Z wo~".

keK

Equivalence of Problems (EC.15) and (EC.16) follows by strong LP duality which applies since the inner

maximization problem in (EC.15) is feasible and bounded. We next interchange the max and min operators,

indexing each of the decision variables by % := (i1,...,1;) € Z¥. We obtain

minimize  max bTB’—i—E b3k
ieTK
kek

subject to ot e R, B* eRE, B** e RE, ~v*F e RYe, VE € K, i€ IX

elat=1
ATBY tworytt=al (Cvx+ D*w+ Q*y*) Vkek VieIX.
AT i :Zwo,yi,k

ke

Finally, we write the above problem as a single minimization using an epigraph formulation, as follows
minimize 7
subject to  T€eR, a’ eRE, Bg*eRY, B**F e RE, v** e RYe, Vhke K, i € TX
T Z bTﬁz + Zke)c bT/Bi,k
_ (EC.17)
e a'=1

' ' o ‘ ‘ Vie X,
ATBY fwoytt =al (Cvx + Dw+ Q*y*) Vkek

ATBi:Zwovi,k

ke

The claim then follows by grouping the outer minimization problem in (15) with the minimization problem

in (EC.17). O
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Proof of Proposition 2 Since (x,w, {y"}.cx) is feasible in the relaxed master problem (CCQmstr(f)), it

follows that € X, w € W, and y* € Y, k € K. Thus, (z,w, {y*}rcx) is feasible in Problem (POLYWE). An

inspection of the Proof of Theorem 6 reveals that the objective value of (z,w, {y*},cx) in Problem (POLVY)

is given by the optimal value of Problem (EC.14). The proof then follows by noting that Problems (EC.14)

and (CCGjeas(x, w, {y"}rex)) are equivalent. O

Proof of Lemma 4

(i) By virtue of Proposition 2, it follows that 6 > 7.

(i) Suppose that § =7 and that there exists 4 € Z¥ such that Problem (CCG ., (T,x, w, {y" }rcx)) is infea-

sible. This implies that there exists 2 € Z¥ such that 7 is strictly smaller than the optimal objective

value of

minimize

subject to

bTA +3 e b B

ot eRE, B*eRE, BP* eRE, vF e RN, Vke K

elat=1 (EC.18)
ATBF fwortk = al (Cx+ Di*w+ Q*y*) Vkek

ATIBi:ZwO,}/i,k.

ke

Equivalently, by dualizing this problem, we conclude that there exists 2 € Z% such that 7 is strictly

smaller than the optimal objective value of

maximize 6’

subject to @' €R, £€E, ¢F € E(w, &), VkEK (EC.19)

0 < (EF)TCH x + (%) D* w4+ (65)T Q% y* Vke K.

Since Problem (EC.19) lower bounds Problem (CCGteas (@, w, {y" }rex)) with optimal objective value 6,

we conclude that 7 < 6, a contradiction.

(#ii) Suppose that § > 7 and let ¢ be defined as in the premise of the lemma. Then, 4 is optimal in (EC.16) with

associated optimal objective value 6. This implies that the optimal objective value of Problem (EC.18)

is 6. Since 6 > 7, this implies that subproblem (CCG’ , (T, T, w, {y"*}rex)) is infeasible, which concludes

the proof.

We have thus proved all claims. [

Proof of Theorem 7 First, note that finite termination is guaranteed since at each iteration, either UB —

LB < ¢ (in which case the algorithm terminates) or a new set of constraints (indexed by the infeasible
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index 1) is added to the master problem (CCG,str (f)), see Lemma 4. Since the set of all indices, Z*¥, is finite,
the algorithm will terminate in a finite number of steps. Second, by construction, at any iteration of the
algorithm, 7 (i.e., LB) provides a lower bound on the optimal objective value of the problem. On the other
hand, the returned (feasible) solution has as objective value 6 (i.e., UB). Since the algorithm only terminates
if UB — LB < §, we are guaranteed that, at termination, the returned solution will have an objective value

that is within § of the optimal objective value of the problem. This concludes the proof. [

EC.6. Proofs of Statements in Section 7

Proof of Theorem 10 For any fixed {w"* },cr r,cx and {y** },cr r,cx, the inner problem in the objec-

tive of Problem (22) can be written in epigraph form as

maximize T
subject to T ER, €Dkr kb e BT (bkr T bkr-1) Wk kp e K

T <Y (€N TD w4 (€T TQ  y R Wk, kr €K
teT

From the definition of Z7(-) in Lemma 5, the above problem can be equivalently written as

maximize T
subject to TER, &M eE Ve T, ky,..., k€K

T S Z(ST,kkal)TDt wt,kt + (ST,kkal)TQt yt,kt Vkl, o kT c IC

teT

i Lkt o gk R = qpt=Lkit o gt Tk sk e TA{1}, ky,... y €K

Writing the set = explicitly yields

maximize T
subject to TER, g8FeRieRNe Vte T, ky,... k€K

T (Drwtt 4 Qtytt) T €T kL k€K
teT

AR <b MteT, ky,... .k, ek

i Lkt o ghke R = qpt=Lkit o gt=Tkeib e TA{1}, ky,..., by €K
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The dual of this problem reads

minimize § § E b7 gk

teT k1EX ke

subject to ERfT, pBrrrk e RE Atk e RNe t e T ky, .. k€K
e a=1

AT,BLkl — Z wl,kl 072,k1k2 Vkl c K

kzek
AT BEFL ke qpt=Lkeo1 o ytikike — Z wiFtontthR ke oy e T\, TY, ky,... kb, €K
kegrek
AT ok — a3 (D Q) Vo

teT

Moreover, strong duality applies by virtue of the compactness of Z. Merging the problem above with the

outer minimization problem in (22) yields

minimize E E E bl Atk

teT k1€ kel

subject to @ ERfT, BrFke e RE ybkibe e RNe e T, ky,... ke
yred, wrtew, vteT, kek
e a=1

AT,@Lkl — Z wl,kl 072,k1k2 \V/kl cK

ko€K

AT Bk gtk gtk — 37 gttt bRk e T\[LTY, k.. ky €K
kiyi1€K

ATBTRRT Tl oy Thbr = o ST (Dt QU YN Yk, kr €K

teT

whke > wtbk-1 e T k,eK, ki1 €K

S Viw'h 4 Wiyttt <h V... kr €K,

teT

and our proof is complete. [
EC.7. Detailed Evaluation Results of Symmetry Breaking & Greedy Heuristic

The details of the evaluation results of symmetry breaking constraints and greedy heuristic approach on a
synthetic dataset with I =40 items and J = 20 features (I' = 0) are provided in Table EC.1. The table shows,
for @ varied in the set {2,4,6,8} and for K =1,...,10: a) the objective value and solver time of this instance
of Problem (11); b) the objective value and solver time of this instance of Problem (11) augmented with the
symmetry breaking constraints presented in Section EC.1.1; ¢) the objective value and solver time of this

instance of Problem (11) solved with the greedy heuristic approach presented in Section EC.1.2. Finally, the
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table summarizes, for each instance, the speed-up factor due to employing symmetry breaking and the loss
in optimality due to employing the greedy heuristic. The speed-up factor is computed as the ratio of the
solver time of the MILP without and with symmetry breaking constraints. The optimality gap of the greedy
solution is computed as the gap between the objective value of the greedy solution and the objective value

of Problem (WCU'F). A summary of these results is provided in Table 2.
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Table EC.1

synthetic dataset with I =40 items and J = 20 features (I' =0).

Detail of evaluation results of symmetry breaking constraints and greedy heuristic approach on a

No Symm. Break. Symm. Break. Heuristic Statistics
QK Objective | Solve Time | Objective | Solve Time | Objective | Solve Time | Symm. Break. | Opt. Gap
Value (sec) Value (sec) Value (sec) Speed-Up of Heuristic

211 0.196 0.492 0.196 0.258 0.196 0.216 1.907 0.000
2| 2 0.348 2.105 0.348 0.785 0.307 0.428 2.682 11.782
213 0.416 48.994 0.416 9.999 0.395 1.225 4.900 5.048
2|4 0.416 5880.26 0.416 135.326 0.395 51.117 43.453 5.048
2|5 - - 0.416 7144.08 0.395 65.333 - 5.048
216 - - - - 0.395 91.773 - -
2|7 - - - - 0.395 147.397 - -
218 - - - - 0.395 134.338 - -
219 - - - - 0.395 165.555 - -
2110 - - - - 0.395 226.524 - -
411 0.196 0.595 0.196 0.584 0.196 0.181 1.019 0.000
412 0.348 1.603 0.348 1.528 0.307 0.378 1.049 11.782
41 3 0.416 31.63 0.416 13.311 0.395 1.332 2.376 5.048
41 4 0.435 1496.96 0.435 104.435 0.431 2.122 14.334 0.920
415 - - 0.449 727.286 0.444 2.799 - 1.114
41 6 - - - - 0.444 1147.550 - -
4|7 - - - - 0.444 2030.130 - -
418 - - - - 0.445 2139.650 - -
419 - . . - 0.445 4011.340 - .
4110 - . . - . - - -
61 0.196 0.636 0.196 0.631 0.196 0.185 1.008 0.000
6|2 0.348 1.763 0.348 1.243 0.307 0.326 1.418 11.782
6|3 0.416 39.369 0.416 13.454 0.395 1.240 2.926 5.048
6| 4 0.435 1210.09 0.435 102.138 0.431 1.759 11.848 0.920
6|5 - - 0.449 883.301 0.444 3.277 - 1.114
6| 6 - - - - 0.450 9.400 - -
617 - - - - 0.463 15.919 - -

6| 8 - - - - 0.471 4049.04 - -
619 - - - - - - - -

6 |10 - - - - - - - -
811 0.196 0.623 0.196 0.587 0.196 0.218 1.061 0.000
81 2 0.348 1.504 0.348 1.351 0.307 0.426 1.113 11.782
813 0.416 36.891 0.416 11.999 0.395 1.037 3.075 5.048
81 4 0.435 1913.76 0.435 78.795 0.431 1.879 24.288 0.920
81| 5 - - 0.449 702.598 0.444 5.912 - 1.114
8|6 - - 0.465 3561.5 0.450 5.609 - 3.226
81 7 - - - - 0.463 13.856 - -

81 8 - - - - 0.474 12.946 - -
819 - - - - 0.477 41.754 - -

8 110 - - - - - - - -




