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ABSTRACT
This paper focuses on a topic that is insufficiently addressed in
the literature, i.e., challenges faced in transitioning agents from an
emerging phase in the lab, to a deployed application in the field.
Specifically, we focus on challenges faced in transitioning HEALER
and DOSIM, two agents for social influence maximization, which
assist service providers in maximizing HIV awareness in real-world
homeless-youth social networks. These agents recommend key
"seed" nodes in social networks, i.e., homeless youth who would
maximize HIV awareness in their real-world social network. While
prior research on these agents published promising simulation re-
sults from the lab, this paper illustrates that transitioning these agents
from the lab into the real-world is not straightforward, and outlines
three major lessons. First, it is important to conduct real-world
pilot tests; indeed, due to the health-critical nature of the domain
and complex influence spread models used by these agents, it is
important to conduct field tests to ensure the real-world usability
and effectiveness of these agents. We present results from three
real-world pilot studies, involving 173 homeless youth in an Amer-
ican city. These are the first such pilot studies which provide head-
to-head comparison of different agents for social influence maxi-
mization, including a comparison with a baseline approach. Sec-
ond, we present analyses of these real-world results, illustrating the
strengths and weaknesses of different influence maximization ap-
proaches we compare. Third, we present research and deployment
challenges revealed in conducting these pilot tests, and propose so-
lutions to address them. These challenges and proposed solutions
are instructive in assisting the transition of agents focused on social
influence maximization from the emerging to the deployed appli-
cation phase.

1. INTRODUCTION
The process of building a software agent that can be deployed

regularly in the real-world to assist under-served communities is
very difficult. While significant attention has been paid in the liter-
ature to build agents for innovative applications, the topic of tran-
sitioning agents from an emerging phase in the lab, to a deployed
application in the field, has not received significant attention [8].
This paper illustrates the research challenges and complexities of
this topic by focusing on agents for a particular health-critical do-
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main, i.e., raising awareness about HIV among homeless youth.
Homeless youth are twenty times more likely to be HIV pos-

itive than stably housed youth, due to high-risk behaviors (such
as unprotected sex, exchange sex, sharing drug needles, etc.) [3,
5]. To reduce rates of HIV infection among youth, many home-
less youth service providers (henceforth just “service providers")
conduct peer-leader based social network interventions [17], where
a select group of homeless youth are trained as peer leaders. This
peer-led approach is particularly desirable because service providers
have limited resources and homeless youth tend to distrust adults.
The training program of these peer leaders includes detailed in-
formation about how HIV spreads and what one can do to prevent
infection. The peer leaders are also taught effective ways of com-
municating this information to their peers [20]. Because of their
limited financial and human resources, service providers can only
train a small number of these youth and not the entire population.
As a result, the selected peer leaders in these intervention trainings
are tasked with spreading messages about HIV prevention to their
peers in their social circles, thereby encouraging them to move to
safer practices. Using these interventions, service providers aim to
leverage social network effects to spread information about HIV,
and induce behavior change (increased HIV testing) among more
and more people in the social network of homeless youth.

In fact, there are further constraints that service providers face –
behavioral struggles of homeless youth means that service providers
can only train 3-4 peer leaders in every intervention. This leads us
to do sequential training; where groups of 3-4 homeless youth are
called one after another for training. They are trained as peer lead-
ers in the intervention, and are asked information about friendships
that they observe in the real-world social network. This newer in-
formation about the social network is then used to improve the se-
lection of the peer leaders for the next intervention. As a result,
the peer leaders for these limited interventions need to be chosen
strategically so that awareness spread about HIV is maximized in
the social network of homeless youth.

Previous work proposed HEALER [27] and DOSIM [25], two
agents which assist service providers in optimizing their interven-
tion strategies. These agents recommend “good" intervention at-
tendees, i.e., homeless youth who maximize HIV awareness in the
real-world social network of youth. In essence, both HEALER and
DOSIM reason strategically about the multiagent system of home-
less youth to select a sequence of 3-4 youth at a time to maximize
HIV awareness. While HEALER [27] is an adaptive software agent
that solves POMDPs to select the best set of peer leaders, DOSIM
[25] uses robust optimization techniques to find the correct set of
peer leaders, even when the influence probability parameters are
not known. Unfortunately, while earlier research [27, 25] pub-
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lished promising simulation results from the lab, neither of these
agent based systems have even been tested so far in the real world.
This paper illustrates that transitioning these agents from the lab
into the real-world is not straightforward.

Several questions need to be answered before final deployment
of these agents. First, do peer leaders actually spread HIV in-
formation in a homeless youth social network, and are they are
able to provide meaningful information about the social network
structure during intervention training (as assumed by HEALER and
DOSIM)? Second, the benefits of deploying a social influence max-
imization agent which selects peer leaders needs to be ascertained,
i.e., would agents (which use POMDPs and robust optimization ap-
proaches to reason about underlying social networks) outperform
standard techniques used by service providers to select peer lead-
ers? If they do not, for some unforeseen reason, then a large-scale
deployment is unwarranted. Third, which agent out of HEALER
or DOSIM performs better in the field? Finally, any unforeseen
challenges that arise need to be solved before deployment.

To answer these questions, it is necessary to conduct real-world
pilot tests, before deployment of these agents on a large scale. In-
deed, the health-critical nature of the domain and complex influ-
ence spread models used by social influence maximization agents
makes conducting pilot tests even more important, to validate their
real-world effectiveness. This paper presents results from three
real-world pilot studies, involving 173 homeless youth in an Amer-
ican city. This is an actual test involving word-of-mouth spread
of information, and actual changes in youth behavior in the real-
world, as a result. To the best of our knowledge, these are the
first such pilot studies which provide head-to-head comparison of
different software agent (with POMDP, robust optimization driven)
approaches for social influence maximization, including a compar-
ison with a baseline approach. Our pilot study results show that
HEALER and DOSIM achieve 184% more information spread than
Degree Centrality (baseline), and do significantly better at induc-
ing behavior change among homeless youth. Second, we present
analyses of these real-world results, illustrating the strengths and
weaknesses of different influence maximization approaches we com-
pare. Specifically, we illustrate how HEALER and DOSIM clev-
erly exploit the community structure of real-world social networks
to outperform Degree Centrality. Third, we present research chal-
lenges revealed in conducting these pilot tests, and propose solu-
tions to address them. These challenges dispel any misguided no-
tions about the ease of taking applications from the emerging to
the deployed application phase. Finally, the promising results ob-
tained in these pilot studies opens the door to future deployment of
HEALER and DOSIM by service providers on a regular basis.

2. MOTIVATING DOMAIN AND RELATED
WORK

The nearly two million homeless youth in the United States [23]
are at high risk of contracting HIV [15]. Given the important role
that peers play in the HIV risk behaviors of homeless youth [18, 7],
it has been suggested that peer leader based interventions for HIV
prevention be developed for these youth [1, 18, 7].

These interventions are desirable for homeless youth (who have
minimal health care access, and are distrustful of adults), as they
take advantage of existing relationships [19]. These interventions
are successful in focusing limited resources to select portions of
large social networks [1, 14]. However, there are still open ques-
tions about “correct" ways to select peer leaders in these interven-
tions, who would maximize awareness spread in these networks.

Unfortunately, very little previous work in the area of real-world
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Figure 1: Facilities at our Collaborating Service Providers

implementation of influence maximization has used AI or algo-
rithmic approaches for peer leader selection, despite the scale and
uncertainty in the networks; instead relying on convenience selec-
tion or simple centrality measures. Kelly et. al. [9] identify peer
leaders based on personal traits of individuals, irrespective of their
structural position in the social network. Moreover, selection of the
most popular youth (i.e., Degree Centrality based selection) is the
most popular heuristic for selecting peer leaders [24]. However,
as we show later, Degree Centrality is ineffective for peer-leader
based interventions, as it only selects peer leaders from a particu-
lar area of the network, while ignoring other areas. On the other
hand, research in computational influence maximization has led to
the development of several algorithms for selecting “seed nodes"
in social networks [10, 13, 2, 4]. Unfortunately, none of these al-
gorithms have been used for peer-leader based interventions in the
real world; as most of them do not handle uncertainties in network
structure, and the sequential nature of conducting interventions (ex-
cept [6]), both of which are crucial in real-world settings.

Indeed, a key challenge in using sophisticated network based
methods for peer leader selection in this domain is that the structure
of homeless youth social networks is not known with certainty [20].
Even with rigorous network data collection methods, there is usu-
ally uncertainty about the real-world existence of many friendships
in the network [19]. This uncertainty and scale of the network im-
plies that choosing peer leaders strategically is extremely difficult
for humans; this is where software agents can help. Indeed, previ-
ously developed agents like HEALER [27, 28, 26] and DOSIM [25]
rely on observations about newer friendships to continually refine
their understanding of the network, which in turn improves peer
leader selection in future interventions. Unfortunately, HEALER
and DOSIM have never been tested in the real world.

3. BACKGROUND
Following Yadav et. al.’s model [27], we represent social net-

works of homeless youth as a directed graph G = (V,E). Each
node v ∈ V represents a homeless youth and each directed edge
e = (A,B) ∈ E represents that node B is a friend of node A.
Furthermore, each edge e ∈ E is associated with two parameters:
(i) an existence probability value (ue), and (ii) a propagation prob-
ability value (pe). The existence probability values ue ∀ e ∈ E
model the service providers uncertainty about the real world net-
work structure. At any given point in time, the service provider
may not be completely sure about the existence of the friendship
between node A and B (for any node A and B). This uncer-
tainty about the existence of friendship between A and B is mod-
eled by the existence probability parameter on directed edge (A,B)
(u(A,B)), which measures the likelihood that B is A’s friend in the
real-world network. If the service provider is completely certain
that A and B are friends, then u(A,B) = 1.0 and edge (A,B) is
considered to be a certain edge. Otherwise, if u(A,B) < 1.0, then
(A,B) is called an uncertain edge.

Next, the propagation probability values pe ∀ e ∈ E measure the



likelihood that influence (or, in our case, information about HIV)
will flow along edge e. For example, if p(A,B) = 0.75, then if
nodeA gets influenced at time t, he/she will influence nodeB with
a 75% chance at time t+1. Note that this influence spread is contin-
gent on the existence of this edge in the real-world network (which
is dictated by the existence probability parameter u(A,B)). This
network G = (V,E), along with ue and pe values for all edges,
represents an uncertain network, which is provided as input to the
software agents like HEALER and DOSIM. Moreover, edges are
assumed to be directed (i.e., unidirectional) in these uncertain net-
works, even though most real-world friendships are bi-directional.
This models the fact that influence spread in either direction of a
bi-directional friendship is asymmetric. Each bi-directional friend-
ship is thus modeled as two unidirectional edges. Figure 2 shows
an uncertain network on 6 nodes (A to F). The dashed and solid
edges represent uncertain (edge numbers 1, 4, 5 and 7) and certain
(edge numbers 2, 3 and 6) edges, respectively.

Figure 2: Uncertain
Network

Influence Model HEALER and
DOSIM use a variant of the indepen-
dent cascade (IC) model [10]. In
the standard IC model, all nodes that
get influenced at round t get a single
chance to influence their un-influenced
neighbors at time t + 1. If they fail to
spread influence in this single chance,
they do not try to influence their neigh-
bors in future rounds. However, in
HEALER and DOSIM’s model, nodes get multiple chances to in-
fluence their un-influenced neighbors; if they fail at time t, they try
to influence again at time t + 1. Finally, influenced nodes are as-
sumed to remain influenced for all future time steps. This influence
model runs for a finite number of time steps, i.e., there a finite num-
ber of stages in which influence spreads [27], as discussed below.

Problem Flow We now explain the real-world setup in which
agents like HEALER [27] and DOSIM [25] are used. The service
provider plans on conducting T interventions, i.e., they conduct in-
terventions in T stages. In each stage, a subset of K youth from
the homeless youth social network are chosen (using the software
agent’s recommendation) as peer leaders for that intervention. The
service providers then conduct the intervention with the selected
peer leaders. During the intervention, service providers learn more
about the social network structure. By talking to the peer lead-
ers in that intervention, service providers infer which of the edges
connected to those peer leaders in the social network are actually
certain (i.e., ue = 1.0), and which edges do not exist (i.e., ue = 0)
in the real world network. This new information about the social
network structure is fed back into the software agent by the service
provider, and is called the agent’s observation for that stage. For
example, in Figure 2, if nodes B and C are chosen as peer lead-
ers for an intervention, then the agent observes the true state of the
uncertain edges outgoing from B and C, e.g., (B,E) exists but
(C,D) does not exist. Using these observations, the agent refines
its understanding of the network structure, and then selects the next
nodes for intervention (i.e., for the next stage).

Furthermore, youth who are trained as peer leaders by service
providers are assumed to be influenced with certainty. These peer
leaders then initiate the influence spread in the network, by in-
fluencing their friends according to the influence model described
above. Since HEALER and DOSIM’s influence model is stochas-
tic in nature, service providers do not get accurate information
about which non-peer-leader network nodes (i.e., youth) have al-
ready been influenced and which have not. Instead, they rely on
the software agent to maintain probabilistic beliefs about the influ-

ence status of nodes. For each of the T stages, the software agent
uses its current belief (e.g., probability distribution over influence
state of each node) to select the next best set of K peer leaders.
Informally then, given an uncertain network G0 = (V,E) and in-
tegers T and K (as defined above), the software agent’s goal is to
find an online policy for choosing exactly K nodes for T succes-
sive stages (interventions) which maximizes influence spread in the
network at the end of T stages.

We now reuse notation [27] for defining the software agent’s pol-
icy formally. Let A = {A ⊂ V s.t. |A| = K} denote the set of K
sized subsets of V , which represents the set of possible actions that
the agent can recommend at every time step t ∈ [1, T ]. Let Ai ∈
A ∀i ∈ [1, T ] denote the agent’s chosen action in the ith time step.
Upon taking actionAi, the agent observes uncertain edges adjacent
to nodes inAi, which updates its understanding of the network. Let
Gi ∀ i ∈ [1, T ] denote the uncertain network resulting from Gi−1

with observed (additional edge) information from Ai. Formally,
we define a history Hi ∀ i ∈ [1, T ] of length i as a tuple of past
choices and observations Hi = 〈G0, A1, G1, A2, .., Ai−1, Gi〉.
Denote by Hi = {Hk s.t. k 6 i} the set of all possible histo-
ries of length less than or equal to i. Finally, we define an i-step
policy Πi : Hi → A as a function that takes in histories of length
less than or equal to i and outputs a K node choice for the current
time step. We now restate the problem statement for DIME [27],
which agents like HEALER and DOSIM solve for.

PROBLEM 1. DIME Problem [27] Given as input an uncertain
net G0 = (V,E) and integers T and K(as defined above). Denote
by R(HT , AT ) the expected total number of influenced nodes at
the end of stage T , given the T -length history of previous obser-
vations and actions HT , along with AT , the action chosen at time
T . Let EHT ,AT∼ΠT [R(HT , AT )] denote the expectation over the
random variables HT = 〈G0, A1, .., AT−1, GT 〉 and AT , where
Ai are chosen according to ΠT (Hi) ∀ i ∈ [1, T ], and Gi are
drawn according to the distribution over uncertain edges of Gi−1

that are revealed byAi. The objective of DIME is to find an optimal
T -step policy Π∗

T = argmaxΠT
EHT ,AT∼ΠT [R(HT , AT )].

3.1 HEALER Description
HEALER [27] is a software agent that casts the DIME prob-

lem as a Partially Observable Markov Decision Process (POMDP)
[16] to compute a T -step online policy for selecting K nodes for
T stages. POMDPs are a good fit for this problem because of
three reasons. First, service providers select T different subsets
of nodes sequentially (i.e., select K nodes for each of T stages);
each subset of K nodes is mapped to a unique POMDP action.
Second, the service providers do not see the exact network state
(i.e., who is already influenced and who is not) at any given point
in time. HEALER maps each POMDP state to indicate which node
is already influenced and which node is not; the stochastic uncer-
tainty over this influence then maps well to a POMDP belief state
– a probability distribution over states. Third, the observation re-
ceived by service providers about edges connected to peer leaders
is analogous to the observations received in POMDPs. However,
the POMDP models (defined in Yadav et. al. [27]) for real-world
network sizes end up having huge state and action spaces (2300

states and
(

150
6

)
actions), because of which solving these POMDPs

is not possible with standard offline or online techniques [22, 21].
As a result, HEALER utilizes hierarchical ensembling techniques

– it creates ensembles of smaller POMDPs at two different levels.
Figure 3 shows the flow of HEALER. First, the original POMDP
is divided into several smaller intermediate POMDPs using graph
partitioning techniques. Next, each intermediate POMDP is fur-
ther subdivided into several smaller sampled POMDPs using graph



Figure 3: Flow of HEALER

sampling techniques. These sampled POMDPs are then solved
in parallel using novel online planning methods – each sampled
POMDP executes a Monte Carlo tree search [21] to select the best
action in that sampled POMDP. The solutions of these sampled
POMDPs are combined to form the solution of the intermediate
POMDPs. Similarly, the solutions of the intermediate POMDPs
are combined to form the solution of the original POMDP. Yadav
et. al. [27] provide more details on HEALER.

3.2 DOSIM Description
DOSIM [25] is a novel algorithm that solves a generalization

of the DIME problem. The key motivation behind DOSIM is to
be able to select actions (i.e., set of K nodes) for T stages with-
out knowing the exact model parameters (i.e., pe and ue values for
each network edge). HEALER dealt with this issue by assuming a
specific pe and ue value based on suggestions by service providers.
DOSIM instead works with interval uncertainty over these model
parameters. That is, the exact value of each ue and pe does not
have be exactly supplied; they are just assumed to lie within some
interval. This generalizes the model used by HEALER to include
higher-order uncertainty over the probabilities in addition to the un-
certainty induced by the probabilities themselves. DOSIM chooses
an action which is robust to this interval uncertainty. Specifically,
it finds a policy which achieves close to optimal value regardless of
where the unknown probabilities lie within the interval. The prob-
lem is formalized as zero sum game between the algorithm, which
picks a policy, and an adversary (nature) who chooses the model
parameters. This game formulation represents a key advance over
HEALER’s POMDP policy (which was constrained to fixed prop-
agation probabilities), as it enables DOSIM to output mixed strate-
gies over POMDP policies, which make it robust against worst-
case propagation probability values. Moreover, DOSIM receives
periodic observations, which are used to update its understanding
of its belief state (i.e., probability distribution over different model
parameters). The strategy space for the game is intractably large
because there are an exponential number of policies (each of which
specifies an action to take for any possible set of observations).
Hence, DOSIM uses a double oracle approach. By iteratively com-
puting best responses for each player, DOSIM finds an approximate
equilibrium of the game without having to enumerate the entire set
of policies.

4. PILOT STUDY PIPELINE
Starting in Spring 2016, we conducted three different pilot stud-

ies at two service providers in a large American city, over a seven
month period. Each pilot study recruited a unique network of youth.
Recall that these pilot studies serve three purposes. First, they help
in justifying our assumptions about whether peer leaders actually

Figure 4: Real World Pilot Study Pipeline

spread HIV information in their social network, and whether they
provide meaningful information about the social network structure
(i.e., observations) during the intervention training. Second, these
pilots help in exposing unforeseen challenges, which need to be
solved convincingly before these agents can be deployed in the
field. Third, they provide a head-to-head comparison of two differ-
ent software agent approaches for social influence maximization,
including a comparison with a baseline approach.

Each of these pilot studies had a different intervention mecha-
nism, i.e., a different way of selecting actions (or a set of K peer
leaders). The first and second studies used HEALER and DOSIM
(respectively) to select actions, whereas the third study served as
the control group, where actions were selected using Degree Cen-
trality (i.e., picking K nodes in order of decreasing degrees). We
chose Degree Centrality (DC) as the control group mechanism, be-
cause this is the current modus operandi of service providers in
conducting these network based interventions [24].

Pilot Study Process The pilot study process consists of five se-
quential steps. Figure 4 illustrates these five steps.

1. Recruitment: First, we recruit homeless youth from a service
provider into our study. We provide youth with general information
about our study, and our expectations from them (i.e., if selected as
a peer leader, they will be expected to spread information among
their peers). The youth take a 20 minute baseline survey, which
enables us to determine their current risk-taking behaviors (e.g.,
they are asked about the last time they got an HIV test, etc.). Every
youth is given a 20 USD gift card as compensation for being a
part of the pilot study. All study procedures were approved by our
Institutional Review Board.

2. Network Generation: After recruitment, the friendship based
social network that connects these homeless youth is generated. We
rely on two information sources to generate this network: (i) online
contacts of homeless youth; and (ii) field observations made by
the authors and service providers. To expedite the network gen-
eration phase, online contacts of homeless youth are used (via a
software application that the youth are asked to use) to build a first
approximation of the real-world social network of homeless youth.
Then, this network is refined using field observations (about addi-
tional real-world friendships) made by the authors and the service
providers. All edges inferred in this manner are assumed to be cer-
tain edges. More information on uncertain edges is provided later.

3. Interventions: Next, the generated network is used by the
software agents to select actions (i.e., K peer leaders) for T stages.
In each stage, an action is selected using the pilot’s intervention
strategy. The K peer leaders of this chosen action are then trained
as peer leaders (i.e., informed about HIV) by pilot study staff during
the intervention. These peer leaders also reveal more information
(i.e., provide observation) about newer friendships which we did
not know about. These friendships are incorporated into the net-



Figure 5: Information Spread with pe on HEALER’s Pilot Network

work, so that the agents can select better actions in the next stage
of interventions. Every peer leader is given a 60 USD gift card.

4. Follow Up: The follow up phase consists of meetings, where
the peer leaders are asked about any difficulties they faced in talk-
ing to their friends about HIV. They are given further encourage-
ment to keep spreading HIV awareness among their peers. These
follow-up meeting occur on a weekly basis, for a period of one
month after Step 3 ends.

5. Analysis: For analysis, we conduct in-person surveys, one
month after all interventions have ended. Every youth in our study
is given a 25 USD gift card to show up for these surveys. During the
surveys, they are asked if some youth from within the pilot study
talked to them about HIV prevention methods, after the pilot study
began. Their answer helps determine if information about HIV
reached them in the social network or not. Thus, these surveys are
used to find out the number of youth who got informed about HIV
as a result of our interventions. Moreover, they are asked to take
the same survey about HIV risk that they took during recruitment.
These post-intervention surveys enable us to compare HEALER,
DOSIM and DC in terms of information spread (i.e., how success-
ful were the agents in spreading HIV information through the social
network) and behavior change (i.e., how successful were the agents
in causing homeless youth to test for HIV), the two major metrics
that we use in our evaluation section.

We provide these behavior change results in order to quantify
the true impact of these social influence maximization agents in
the homeless youth domain. In these results, we measure behavior
change by asking youth if they have taken an HIV test at base-
line and repeating this question during the follow up surveys. If
the youth reported taking an HIV test at one month (after inter-
ventions) but not at baseline and that youth also reported getting
informed about HIV, we attribute this behavior change to our inter-
vention. This allows us to measure whether our interventions led to
a reduction in risk attitudes.

Uncertain network parameters While there exist many link
prediction techniques [11] to infer uncertain edges in social net-
works, the efficacy of these techniques is untested on homeless
youth social networks. Therefore, we took a simpler, less "risky"
approach – each edge not created during the network generation
phase (i.e., Step 2 above) was added to the network as an uncer-
tain edge. Thus, after adding these uncertain edges, the social net-
work in each pilot study became a completely connected network,
consisting of certain edges (inferred from Step 2), and uncertain
edges. The existence probability on each uncertain edge was set to
u = 0.01. Our approach to adding uncertain edges ensures that no
potential friendship is missed in the social network because of our
lack of accurate knowledge.

Getting propagation probabilities (pe) values was also challeng-
ing. In HEALER’s pilot, service providers estimated that the true
pe value would be somewhere around 0.5. Since the exact value
was unknown, we assumed an interval of [0.4, 0.8] and simulated

HEALER’s performance with pe values in this range. Figure 5
shows how information spread achieved by HEALER on its pilot
study network is relatively stable in simulation for pe values around
0.5. The Y-axis shows the information spread in simulation and the
X-axis shows increasing pe values. This figure shows that infor-
mation spread achieved by HEALER varied by ∼11.6% with pe in
the range [0.4, 0.8]. Since influence spread is relatively stable in
this range, we selected pe = 0.6 (the mid point of [0.4, 0.8]) on
all network edges. Later, we provide ex-post justification for why
pe = 0.6 was a good choice, atleast for this pilot study.

In DOSIM’s pilot, we did not have to deal with the issue of as-
signing accurate pe values to edges in the network. This is because
DOSIM can work with intervals in which the exact pe is assumed
to lie. For the pilot study, we used the same interval of [0.4, 0.8]
to run DOSIM. Finally, the control group pilot study did not re-
quire finding pe values, as peer leaders were selected using Degree
Centrality, which does not require knowledge of pe.

5. RESULTS FROM THE FIELD
We now provide results from all three pilot studies. In each

study, three interventions were conducted (or, T = 3), i.e., Step 3
of the pilot study process (Figure 4) was repeated three times. The
actions (i.e., set of K peer leaders) were chosen using intervention
strategies (policies) provided by HEALER [27], DOSIM [25], and
Degree Centrality (DC) in the first, second and third pilot studies,
respectively. Recall that we provide comparison results on two dif-
ferent metrics. First, we provide results on information spread, i.e.,
how well different software agents were able to spread informa-
tion about HIV through the social network. Second, even though
HEALER and DOSIM do not explicitly model behavior change in
their objective function (both maximize the information spread in
the network), we provide results on behavior change among home-
less youth, i.e., how successful were the agents in inducing behav-
ior change among homeless youth.

Figure 6: Set of
Surveyed Non Peer-
Leaders

Figure 6 shows a Venn diagram that
explains the results that we collect from
the pilot studies. To begin with, we ex-
clude peer leaders from all our results,
and focus only on non peer-leaders.
This is done because peer leaders can-
not be used to differentiate the infor-
mation spread (and behavior change)
achieved by HEALER, DOSIM and
DC. In terms of information spread, all
peer leaders are informed about HIV directly by study staff in the
intervention trainings. In terms of behavior change, the propor-
tion of peer leaders who change their behavior does not depend on
the strategies recommended by HEALER, DOSIM and DC. Thus,
Figure 6 shows a Venn diagram of the set of all non peer-leaders
(who were surveyed at the end of one month). This set of non peer-
leaders can be divided into four quadrants based on (i) whether they
were informed about HIV or not (by the end of one-month surveys
in Step 5 of Figure 4); and (ii) whether they were already tested for
HIV at baseline (i.e., during recruitment, they reported that they
had got tested for HIV in the last six months) or not.

For information spread results, we report on the percentage of
youth in this big rectangle, who were informed about HIV by the
end of one month (i.e., boxes A+B as a fraction of the big box). For
behavior change results, we exclude youth who were already tested
at baseline (as they do not need to undergo “behavior change", be-
cause they are already exhibiting desired behavior of testing). Thus,
we only report on the percentage of untested informed youth, (i.e.,
box B), who now tested for HIV (i.e., changed behavior) by the



HEALER DOSIM DC
Youth Recruited 62 56 55
PL Trained 17.7% 17.85% 20%
Retention % 73% 73% 65%
Avg. Observation Size 16 8 15

Figure 7: Logistic Details of Different Pilot Studies
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Figure 8: Information Spread Comparison & Analysis

end of one month (which is a fraction of youth in box B). We do
this because we can only attribute conversions (to testers) among
youth in box B (Figure 6) to strategies recommended by HEALER
and DOSIM (or the DC baseline). For example, non peer-leaders
in box D who convert to testers (due to some exogenous reasons)
cannot be attributed to HEALER or DOSIM’s strategies (as they
converted to testers without getting HIV information).

Study Details Figure 7 shows details of the pilot studies. This
figure shows that the three pilots had fairly similar conditions as (i)
all three pilots recruited∼60 homeless youth; (ii) peer leader train-
ing was done on 15-20% of these youth, which is recommended in
social sciences literature [17]; and (iii) retention rates of youth (i.e.,
percentage of youth showing up for post-intervention surveys) were
fairly similar (∼70%) in all three pilots. This figure also shows that
peer leaders provided information about 13 uncertain friendships
on average in every intervention stage (across all three pilot stud-
ies), which validates HEALER and DOSIM’s assumption that peer
leaders provide observations about friendships [27, 25].

Information Spread Figure 8a compares the information spread
achieved by HEALER, DOSIM and DC in the pilot studies. The
X-axis shows the three different intervention strategies and the Y-
axis shows the percentage of non-peer-leaders to whom informa-
tion spread (box A+B as a percentage of total number of non-peer
leaders in Figure 6). This figure shows that PL chosen by HEALER
(and DOSIM) are able to spread information among ∼70% of the
non peer-leaders in the social network by the end of one month.
Surprisingly, PL chosen by DC were only able to inform ∼27%
of the non peer-leaders. This result is surprising, as it means that
HEALER and DOSIM’s strategies were able to improve over DC’s
information spread by over 184%. We now explain reasons be-
hind this significant improvement in information spread achieved
by HEALER and DOSIM (over DC).

Figure 8b illustrates a big reason behind DC’s poor performance.
The X-axis shows different pilots and the Y-axis shows what per-
centage of network edges were redundant, i.e., they connected two
peer leaders. Such edges are redundant, as both its nodes (peer
leaders) already have the information. This figure shows that re-
dundant edges accounted for only 8% (and 4%) of the total edges
in HEALER (and DOSIM’s) pilot study. On the other hand, 21% of
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Figure 9: Exploiting community structure of real-world networks

Figure 10: Four Partitions of DC’s Pilot Network

the edges in DC’s pilot study were redundant. Thus, DC’s strategies
picks PL in a way which creates a lot of redundant edges, whereas
HEALER picks PL which create only 1/3 times the number of re-
dundant edges. DOSIM performs best in this regard, by selecting
nodes which creates the fewest redundant edges (∼ 5X less than
DC, and even 2X less than HEALER), and is the key reason be-
hind its good performance in Figure 8a. Concomitantly to the pres-
ence of redundant edges, HEALER also spreads out its PL selection
across different communities within the homeless youth network,
that also aids in information spreading, as discussed below.

Figure 9a shows the community structure of the three pilot study
social networks. To generate this figure, the three networks were
partitioned into communities using METIS [12], an off-the-shelf
graph partitioning tool. We partitioned each network into four dif-
ferent communities (as shown in Figure 10) to match the number
of PL (i.e., K = 4) chosen in every stage. The X-axis shows the
three pilot study networks and the Y-axis shows the percentage of
edges that go across these four communities. This figure shows
that all three networks can be fairly well represented as a set of rea-
sonably disjointed communities, as only 15% of edges (averaged
across all three networks) went across the communities. Next, we
show how HEALER and DOSIM exploit this community structure
by balancing their efforts across these communities simultaneously
to achieve greater information spread as compared to DC.

Figure 9b illustrates patterns of PL selection (for each stage of
intervention) by HEALER, DOSIM and DC across the four dif-
ferent communities uncovered in Figure 9a. Recall that each pi-
lot study comprised of three stages of intervention (each with four
selected PL). The X-axis shows the three different pilots. The Y-
axis shows what percentage of communities had a PL chosen from
within them. For example, in DC’s pilot, the chosen PL covered
50% (i.e., two out of four) communities in the 1st stage, 75% (i.e.,
three out of four) communities in the 2nd stage, and so on. This
figure shows that HEALER’s chosen peer leaders cover all possi-
ble communities (i.e., 100% communities touched) in the social
network in all three stages. On the other hand, DC concentrates
its efforts on just a few clusters in the network, leaving ∼50%
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Figure 11: Behavior Change & Information Spread in Simulation

communities untouched (on average). Therefore, while HEALER
ensures that its chosen PL covered most real-world communities
in every intervention, the PL chosen by DC focused on a single
(or a few) communities in each intervention. This further explains
why HEALER is able to achieve greater information spread, as it
spreads its efforts across communities unlike DC. While DOSIM’s
coverage of communities is similar to DC, it outperforms DC be-
cause of ∼5X less redundant edges than DC (Figure 8b).

Behavior Change Figure 11a compares behavior change ob-
served in homeless youth in the three pilot studies. The X-axis
shows different intervention strategies, and the Y-axis shows the
percentage of non peer-leaders who were untested for HIV at base-
line and were informed about HIV during the pilots (i.e. youth in
box B in Figure 6). This figure shows that PL chosen by HEALER
(and DOSIM) converted 37% (and 25%) of the youth in box B to
HIV testers. In contrast, PL chosen by DC did not convert any youth
in box B to testers. DC’s information spread reached a far smaller
fraction of youth (Figure 8a), and therefore it is unsurprising that
DC did not get adequate opportunity to convert anyone of them to
testing. This shows that even though HEALER and DOSIM do
not explicitly model behavior change in their objective function,
the agents strategies still end up outperforming DC significantly in
terms of behavior change.

6. CHALLENGES UNCOVERED
This section highlights research and methodological challenges

that we uncovered while deploying these agent based interventions
in the field. While handling these challenges in a principled manner
is a subject for future research, we explain some heuristic solutions
used to tackle these challenges in the three pilot studies (which may
help in addressing the longer term research challenges).

Research Challenges While conducting interventions, we often
encounter an inability to execute actions (i.e., conduct intervention
with chosen peer leaders), because a subset of the chosen peer lead-
ers may fail to show up for the intervention (because they may get
incarcerated, or find temporary accommodation). Handling this in-
ability to execute actions in a principled manner is a research chal-
lenge. Therefore, it is necessary that algorithms and techniques
developed for this problem are robust to these errors in execution
of intervention strategy. Specifically, we require our algorithms to
be able to come up with alternate recommendations for peer lead-
ers, when some homeless youth in their original recommendation
are not found. We now explain how HEALER, DOSIM and DC
handle this challenge by using heuristic solutions.

Recall that for the first pilot, HEALER’s intervention strategies
were found by using online planning techniques for POMDPs [27].
Instead of offline computation of the entire policy (strategy), on-
line planning only finds the best POMDP action (i.e., selection of
K network nodes) for the current belief state (i.e., probability dis-

HEALER DOSIM DC
Network Diameter 8 8 7
Network Density 0.079 0.059 0.062
Avg. Clustering Coefficient 0.397 0.195 0.229
Avg. Path Length 3.38 3.15 3.03
Modularity 0.568 0.568 0.602

Figure 12: Similarity of social networks in different pilot studies

tribution over state of influence of nodes). Upon reaching a new
belief state, online planning again plans for this new belief. This
interleaving of planning and execution works to our advantage in
this domain, as every time we have a failure which was not antic-
ipated in the POMDP model (i.e., a peer leader which was chosen
in the current POMDP action did not show up), we can recompute
a policy quickly by marking these unavailable nodes, so that they
are ineligible for future peer leader selection. After recomputing
the plan, the new peer leader recommendation is again given to the
service providers to conduct the intervention.

For the second pilot study, we augmented DOSIM to account for
unavailable nodes by using its computed policy to produce a list
of alternates for each peer leader. This alternate list ensures that
unlike HEALER, DOSIM does not require rerunning in the event of
a failure. Thus, if a given peer leader does not show up, then study
staff work down the list of alternates to find a replacement. DOSIM
computes these alternates by maintaining a parameter qv (for each
node v), which gives the probability that node v will show up for
the intervention. This qv parameter enables DOSIM to reason about
the inability to execute actions, thereby making DOSIM’s policies
robust to such failures. To compute the alternate for v, we condition
on the following event σv: node v fails to show up (i.e., set qv =
0), while every other peer leader u shows up with probability qu.
Conditioned on this event σv , we find the node which maximizes
the conditional marginal gain in influence spread, and use it as the
alternate for node v. Hence, each alternate is selected in a manner
which is robust with respect to possible failures on other peer leader
nodes. Finally, in the DC pilot, in case of a failure, the node with
the next highest degree is chosen as a peer leader.

Methodological Challenges A methodological challenge was to
ensure a fair comparison of the performance of different agents in
the field. In the real-world, HEALER, DOSIM and DC could not
be tested on the same network, as once we spread HIV messages
in one network as part of one pilot study, fewer youth are unaware
about HIV (or uninfluenced) for the remaining pilots. Therefore,
each agent (HEALER, DOSIM or DC) is tested in a different pilot
study with a different social network (with possibly different struc-
ture). Since HEALER, DOSIM and DC’s performance is not com-
pared on the same network, it is important to ensure that HEALER
and DOSIM’s superior performance (observed in Figure 8a) is not
due to differences in network structure or any extraneous factors.

First, we compare several well-known graph metrics for the three
distinct pilot study social networks. Figure 12 shows that most met-
rics are similar on all three networks, which establishes that the so-
cial networks generated in the three pilot studies were structurally
similar. This suggests that comparison results would not have been
very different, had all three algorithms been tested on the same net-
work. Next, we attempt to show that HEALER and DOSIM’s su-
perior performance (Figure 8a) was not due to extraneous factors.

Figure 11b compares information spread achieved by peer lead-
ers in the actual pilot studies with that achieved by the same peer
leaders in simulation. The simulation (averaged over 50 runs) was
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Figure 13: Investigation of peculiarities in network structure

done with propagation probability set to pe = 0.6 in our influence
model (Section 3). The X-axis shows the different pilots and the Y-
axis shows the percentage of non peer-leaders informed in the pilot
study networks. First, this figure shows that information spread in
simulation closely mirrors pilot study results in HEALER and DC’s
pilot (∼10% difference), whereas it differs greatly in DOSIM’s pi-
lot. This shows that using pe = 0.6 as the propagation probability
modeled the real-world process of influence spread in HEALER
and DC’s pilot study network fairly well, whereas it was not a good
model for DOSIM’s pilot network. This further suggests that in-
formation spread achieved in the real world (atleast in HEALER
and DC’s pilot) was indeed due to the respective strategies used,
and not some extraneous factors. In other words, DC’s poor per-
formance may not be attributed to some real-world external factors
at play, since its poor performance is mimicked in simulation re-
sults (which are insulated from real-world external factors) as well.
Similarly, HEALER’s superior performance may not be attributed
to external factors working in its favor, for the same reason.

On the other hand, since DOSIM’s performance in the pilot study
does not mirror simulation results in Figure 11b, it suggests the role
of some external factors, which were not considered in our mod-
els. However, the comparison of simulation results in this figure is
statistically significant (p − value = 9.43E − 12), which shows
that even if DOSIM’s performance in the pilot study matched its
simulation results, i.e., even if DOSIM achieved only ∼40% infor-
mation spread in its pilot study (as opposed to the 70% spread that
it actually achieved), it would still outperform DC by ∼33%.

Having established that DC’s poor performance was not due to
any external factors, we now show that DC’s poor performance in
the field was also not tied to some peculiar property/structure of the
network used in its pilot study. Figure 13a compares information
spread achieved by different agents (in simulation over 50 runs),
when each agent was run on DC’s pilot study network. Again, the
simulation was done using pe = 0.6 as propagation probability,
which was found to be a reasonable model for real-world influence
spread in DC’s network (see Figure 11b). The X-axis in Figure
13a shows different algorithms being run on DC’s pilot study net-
work (in simulation). The Y-axis shows the percentage of non peer-
leaders informed. This figure shows that even on DC’s pilot study
network, HEALER (and DOSIM) outperform DC in simulation by
∼53% (and 76%) (p − value = 9.842E − 31), thereby estab-
lishing that HEALER and DOSIM’s improvement over DC was
not due to specific properties of the networks in their pilot stud-
ies, i.e., HEALER and DOSIM’s superior performance may not be
attributed to specific properties of networks (in their pilot studies)
working in their favor. In other words, this shows that DC’s poor
performance may not be attributed to peculiarities in its network
structure working against it, as otherwise, this peculiarity should

have affected HEALER and DOSIM’s performance as well, when
they are run on DC’s pilot study network (which does not happen
as shown in Figure 13a).

Figure 13b shows information spread achieved by peer lead-
ers (chosen in the pilot studies) in simulation (50 runs), averaged
across 30 different networks which were generated by perturbation
of the three pilot study networks. The X-axis shows the networks
which were perturbed. The Y-axis shows the percentage difference
in information spread achieved on the perturbed networks, in com-
parison with the unperturbed network. For example, adding 5%
edges randomly to HEALER’s pilot study network results in only
∼2% difference (p− value = 1.16E − 08) in information spread
(averaged across 30 perturbed networks). These results support the
view that HEALER, DOSIM and DC’s performance are not due to
their pilot study networks being on the knife’s edge in terms of spe-
cific peculiarities. Thus, HEALER and DOSIM outperform DC on
a variety of slightly perturbed networks as well.

7. CONCLUSION & LESSONS LEARNED
This paper illustrates challenges faced in transitioning agents

from an emerging phase in the lab, to a deployed application in
the field. It presents first-of-its-kind results from three real-world
pilot studies, involving 173 homeless youth in an American city.
Conducting these pilot studies underlined their importance in this
transition process – they are crucial milestones in the arduous jour-
ney of an agent from an emerging phase in the lab, to a deployed
application in the field. The pilot studies helped in answering sev-
eral questions that were raised in Section 1. First, we learnt that
peer-leader based interventions are indeed successful in spreading
information about HIV through a homeless youth social network
(as seen in Figures 8a). Moreover, we learnt that peer leaders are
very adept at providing lots of information about newer friendships
in the social network (Figure 7), which helps software agents to
refine its future strategies.

These pilot studies also helped to establish the superiority (and
hence, their need) of HEALER and DOSIM – we are using com-
plex agents (involving POMDPs and robust optimization), and they
outperform DC (the modus operandi of conducting peer-led inter-
ventions) by 184% (Figures 8a, 11a). The pilot studies also helped
us gain a deeper understanding of how HEALER and DOSIM beat
DC (shown in Figures 8b, 9b, 9a) – by minimizing redundant edges
and exploiting community structure of real-world networks. Out of
HEALER and DOSIM, the pilot tests do not reveal a significant
difference in terms of either information spread or behavior change
(Figures 8a, 11a). Thus, carrying either of them forward would lead
to significant improvement over the current state-of-the-art tech-
niques for conducting peer-leader based interventions. However,
DOSIM runs significantly faster than HEALER (∼ 40×), thus, it
is more beneficial in time-constrained settings [25].

These pilot studies also helped uncover several key challenges
(e.g., inability to execute actions, estimating propagation probabil-
ities, etc.), which were tackled in the pilot studies using heuristic
solutions. However, handling these challenges in a principled man-
ner is a subject for future research. Thus, while these pilot studies
open the door to future deployment of these agents in the field (by
providing positive results about the performance of HEALER and
DOSIM), they also revealed some challenges which need to be re-
solved convincingly before these agents can be deployed.
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