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ABSTRACT
Most previous work on influence maximization in social networks as-
sumes that the chosen influencers (or seed nodes) can be influenced
with certainty (i.e., with no contingencies). In this paper, we focus
on using influence maximization in public health domains for assist-
ing low-resource communities, where contingencies are common.
It is very difficult in these domains to ensure that the seed nodes
are influenced, as influencing them entails contacting/convincing
them to attend training sessions, which may not always be possi-
ble. Unfortunately, previous state-of-the-art algorithms for influence
maximization are unusable in this setting. This paper tackles this
challenge via the following four contributions: (i) we propose the
Contingency Aware Influence Maximization problem and analyze
it theoretically; (ii) we cast this problem as a Partially Observable
Markov Decision Process and propose CAIMS (a novel POMDP
planner) to solve it, which leverages a natural action space fac-
torization associated with real-world social networks; and (iii) we
provide extensive simulation results to compare CAIMS with exist-
ing state-of-the-art influence maximization algorithms. Finally, (iv)
we provide results from a real-world feasibility trial conducted to
evaluate CAIMS, in which key influencers in homeless youth social
networks were influenced in order to spread awareness about HIV.

INTRODUCTION
The influence maximization problem is an NP-Hard combinatorial
optimization problem [9], which deals with finding a set of K influ-
ential seed nodes in a social network to optimally spread influence
in the network according to some pre-specified diffusion model. It
is a practically relevant problem with numerous potential applica-
tions in the real world, especially in public health domains involving
low-resource communities. For example, it has been used to prevent
smoking among teenagers [23], and to promote healthier lifestyles
among risky populations [13]. Recently, influence maximization al-
gorithms were used to spread awareness about HIV among homeless
youth with great results [26].

Recently, several efficient algorithms have been proposed (and
deployed in the real-world) to solve influence maximization prob-
lems [2, 5, 22, 24]. Most of these algorithms rely on the following
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key assumption: seed nodes can be influenced with certainty. Unfor-
tunately, in most public health domains, this assumption does not
hold as “influencing" seed nodes entails training them to be “peer
leaders" [23]. For example, seed nodes promoting HIV awareness
among homeless youth need to be trained so that they can communi-
cate information about supposedly private issues in a safe manner
[18]. This issue of training seed nodes leads to two practical chal-
lenges. First, it may be difficult to contact seed nodes in a timely
manner (e.g., contacting homeless youth is challenging since they
rarely have fixed phone numbers, etc). Second, these seed nodes
may decline to be influencers (e.g., they may decline to show up
for training sessions). In this paper, we refer to these two events as
contingencies in the influence maximization process.

Unsurprisingly, these contingencies result in a wastage of valuable
time/money spent in unsuccessfully contacting/convincing the seed
nodes to attend the training. Moreover, the resulting influence spread
achieved is highly sub-optimal, as very few seed nodes actually at-
tend the training session, which defeats the purpose of conducting
these interventions. Clearly, contingencies in the influence maxi-
mization process need to be considered very carefully.

In this paper, we propose a principled approach to handle these
inevitable contingencies via the following contributions. First, we in-
troduce the Contingency Aware Influence Maximization (or CAIM)
problem to handle cases when seed nodes may be unavailable, and an-
alyze it theoretically. The principled selection of alternate seed nodes
in CAIM (when the most preferred seed nodes are not available)
sets it apart from any other previous work in influence maximiza-
tion, which mostly assumes that seed nodes are always available
for activation. Second, we cast the CAIM problem as a Partially
Observable Markov Decision Process (POMDP) and solve it using
CAIMS (CAIM Solver), a novel POMDP planner which provides
an adaptive policy which explicitly accounts for contingency oc-
currences. CAIMS is able to scale up to real-world network sizes
by leveraging the community structure (present in most real-world
networks) to factorize the action space of our original POMDP into
several smaller community-sized action spaces. Further, it utilizes in-
sights from social network literature to represent belief states in our
POMDP in a compact, yet accurate manner using Markov networks.
Our simulations show that CAIMS outperforms state-of-the-art in-
fluence maximization algorithms by ∼60%. Finally, we evaluate
CAIMS’s usability in the real-world by using it to train a small set
of homeless youth (the seed nodes) to spread awareness about HIV
among their peers. This domain is an excellent testbed for CAIMS,
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as the transient nature of homeless youth increases the likelihood of
the occurrence of contingencies [15].

Related Work In addition to the work on influence maximization
highlighted in the introduction, [21] is related to our work as it
solves an orthogonal problem: how to incentivize people in order to
be influencers? Unlike us, they solve a mechanism-design problem
where nodes have private costs, which need to be paid for them
to be influencers. However, in our domains of interest, monetary
gains/losses are not the reason behind nodes getting influenced or
not. Instead, nodes do not get influenced because of contingencies.

We also discuss work in POMDP planning, since we cast CAIM as
a POMDP. SARSOP [11] is a state-of-the-art offline POMDP solver
but it does not scale up to larger state spaces. [20] proposed POMCP
which use Monte-Carlo tree search in online planning, but it does
not scale up to larger action spaces. As a result, FV-POMCP [1, 17]
was proposed which relies on a factorized action space to scale up
to larger problems. In our work, we complement their advances to
build CAIMS, which leverages insights from social network theory
to factorize action spaces in a provably “lossless" manner, and to
represent beliefs in an accurate manner.

CAIM MODEL & PROBLEM
We motivate our discussion of the CAIM problem by focusing on
a particular public health domain: preventing HIV spread among
homeless youth. In this domain, youth are extremely susceptible to
HIV infection due to high-risk activities that they engage in, e.g.,
unprotected sex, etc. [4]. In order to reduce the spread of HIV, several
non-profit agencies called “homeless shelters" conduct intervention
training camps to train influential homeless youth as “peer leaders",
so that they can spread awareness about HIV in the friendship based
social network of homeless youth, via peers in their social circles
[13].

Unfortunately, homeless shelters do not have the resources to train
all homeless youth in the social network as peer leaders. Moreover,
as behavioral problems of homeless youth makes managing larger
groups difficult [14], intervention training camps (interventions for
short) can only include a small number (∼5-6) of youth.

In practice, the shelter officials typically only have 4-5 days to
locate/invite the desired youth to be trained. However, the transient
nature of homeless youth (i.e., no fixed postal address, phone number,
etc) makes contacting the chosen peer leaders difficult for homeless
shelters. Further, most youth are distrustful of adults, and thus, they
may decline to be trained as peer leaders [12]. As a result of these
“contingencies", the shelter officials are often forced to conduct their
intervention with very few peer leaders in attendance, despite each
official spending 4-5 days worth of man hours in trying to find the
chosen peer leaders [26]. Moreover, the peer leaders who finally
attend the intervention are usually not influential seed nodes. This
has been the state of operations even though peer-led interventions
have been conducted by social workers for almost a decade now.

To avoid this outcome, ad-hoc measures have been proposed [26],
e.g., contacting many more homeless youth than they can safely
manage in an intervention. However, one then runs the risk that lots
of youth may agree to be peer leaders, and shelter officials would
have to conduct the intervention with all these youth (since it’s un-
ethical to invite a youth first and then ask him/her not to come to the

(a) Social Network 1

(b) Social Network 2

Figure 1: Examples illustrating harm in overprovisioning

intervention), even if the total number of such participants exceeds
their maximum capacity [16]. This results in interventions where
the peer leaders may not be well trained, as insufficient attention is
given to any one youth in the training. Note that if contingencies
occurred infrequently, then inviting a few extra nodes (over the max-
imum capacity) may be a reasonable solution. However, as we show
in the real-world feasibility trial conducted by us, contingencies
are very common (∼80%, or 14 out of 18 invitations in the real-
world study resulted in contingencies), and thus, overprovisioning
by a small number of nodes is not an option. An ad-hoc fix for this
over-attendance, is to first select (say) twice the desired number of
homeless youth, invite them one at a time, and stop as soon as the
desired number of homeless youth have accepted the invitation. We
study this algorithm further after describing our influence model.

Social Networks We represent friendship based social networks
as undirected graphs G = (V ,E), where each node v ∈ V represents
a person in the social network and an edge e = (A,B) ∈ E between
two nodes A and B (say) represents that nodes A and B are friends.
Each edge e ∈ E has a propagation probability p(e) associated with it,
which represents the probability that a node which is influenced (has
information) will pass on that influence to their neighbor. Influence
spreads using the independent cascade model [9], in which all nodes
that get influenced at time t get a single chance to influence their
un-influenced neighbors at time t + 1. This graph G with all relevant
p(e) values represents a friendship based social network and serves
as an input to the CAIM problem.

Overprovisioning May Backfire Let K denote the number of
nodes (or homeless youth) we want at the intervention. Now, suppose
we overprovision by a factor of 2 and use the algorithm mentioned
before. In particular, instead of searching for the optimal set of K
seed nodes, the algorithm finds the optimal set of 2K seed nodes and
then influences the first K of these nodes that accept the invitation.
Under contingencies, this algorithm is expected to perform better
than the algorithm without overprovisioning. Surprisingly, this is
not the case. In particular, overprovisioning may make things worse.
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Two key ideas behind this are: (i) No K-sized subset of the optimal
set of 2K nodes may be as good as the optimal set of K nodes (this
indicates that we may not be looking for the right nodes when we
search for the optimal set of 2K nodes), and (ii) An arbitrary K-sized
subset of the optimal set of 2K nodes (obtained because we stick to
the first K nodes that accept the invitation) may perform arbitrarily
bad.

We consider two examples that concretize these facts. For sim-
plicity of the examples, we assume that influence spreads only for
one round, number of nodes required for the intervention is K = 1
and the propagation probability p(e) is 0.5 for every edge. Firstly,
consider the example social network graph in Figure 1a. Suppose
C and C1 are nodes that are regularly available, and are likely to
accept the invitation. Now, let’s find the best single node to influence
for maximum influence spread. We don’t need to consider nodes
other than {C1,C,C2} since they’re obviously suboptimal. For the
remaining nodes, we have I(C1) = 5 ∗ 0.5 = 2.5, I(C) = 6 ∗ 0.5 = 3
and I(C2) = 5 ∗ 0.5 = 2.5, and so the best single node to influence is
C. Now, suppose we overprovision by a factor of 2, and try to find the
optimal set of 2 nodes for maximum influence spread. The influence
values are I({C1,C}) = I({C2,C}) = 5 ∗ 0.5 + 3 ∗ 0.75 = 4.75
and I({C1,C2}) = 10 ∗ 0.5 = 5. So, the optimal set of 2 nodes to
influence is {C1,C2}. But, since we need only one node, we would
eventually be influencing either C1 or C2, giving us an expected
influence of 2.5. On the other hand, if we did not overprovision, we
would go for node C (the best single node to influence) and have an
expected influence of 3. This example demonstrates that no K-sized
subset of the optimal set of 2K nodes may be as good as the optimal
set of K nodes. Note that, for clarity, the example considered here
was small and made simple, and hence the difference between 3 and
2.5 may seem small. But, the example can be extended such that the
difference is arbitrarily larger.

Secondly, consider the example social network graph of Figure 1b.
Again, for simplicity, we assume that influence spreads only for one
round, number of nodes required for the intervention is K = 1 and
the propagation probability p(e) is 0.5 for every edge. Like before,
let’s find the best single node to influence for maximum influence
spread. We don’t need to consider nodes other than {C1,C2,C3}
since they’re obviously suboptimal. For the remaining nodes, we
have I(C1) = 6 ∗ 0.5 = 3, I(C2) = 5 ∗ 0.5 = 2.5 and I(C3) =
3 ∗ 0.5 = 1.5, and so the best single node to influence is C1. Now,
suppose we overprovision by a factor of 2, and try to find the optimal
set of 2 nodes for maximum influence spread. The influence values
are I({C1,C2}) = 1∗0.5+5∗0.75 = 4.25, I({C2,C3}) = 8∗0.5 = 4
and I({C1,C3}) = 9 ∗ 0.5 = 4.5. So, the optimal set of 2 nodes is
{C1,C3}, and it would be selected by the overprovisioning algorithm.
But, as mentioned before, we stop once we find the first node that
accepts the invitation. In case C1 is the first node encountered and it
accepts the invitation, then there’s an expected influence of 3, but if
C3 is the first such node, the expected influence would be as low as
1.5. On the other hand, the standard algorithm would directly go for
C1 giving an expected influence of 3.

On a different note, suppose in this second example, node C1
is unavailable (because say it declines the invitation). In this case,
the overprovisioning algorithm would have to go for C3 (the only
other node in the optimal set of 2 nodes), leading to an expected
influence of 1.5. However, an adaptive solution, would look for node

(a) SBM Networks (b) PA Networks

Figure 2: The Harm in Overprovisioning

C1 and after finding that its unavailable, would go for the next best
node which is node C2. This gives an adaptive solution an expected
influence of 2.5.

We further investigate the impact of overprovisioning by measur-
ing the performance of the Greedy algorithm [9] (the gold standard
in influence maximization) under varying levels of overprovisioning.
Figures 2a and 2b compare influence spread achieved by Greedy
on stochastic block model (SBM) and preferential attachment (PA)
networks [19], respectively, as it finds the optimal set ofm ∗K nodes
(K = 2) to invite (i.e., overprovision by factorm) and influence the
first K nodes that accept the invitation. The x-axis shows increasing
m values and the y-axis shows influence spread. This figure shows
that in both SBM and PA networks of different sizes, overprovi-
sioning hurts, i.e., optimizing for larger seed sets in anticipation of
contingencies actually hurts influence spread. Overprovisioning’s
poor performance reveals that simple solutions do not work, thereby
necessitating careful modeling of contingencies, as we do in CAIM.

Problem Setup Given a friendship based social network, the
goal in CAIM is to invite several network nodes for the intervention
until we get K nodes who agree to attend the intervention. The
problem proceeds in T sequential sessions, where T represents the
number of days that are spent in trying to invite network nodes for
the intervention. In each session, we assume that nodes are either
available or unavailable for invitation. This is because on any given
day (session), homeless youth may either be present at the shelter
(i.e., available) or not (i.e., unavailable). We assume that only nodes
which are available in a given session can accept invitations in that
session. This is because homeless youth frequently visit shelters,
hence we utilize this opportunity to issue invitations to them if we
see them at the shelter.

Let ϕt ∈ {0, 1}N (called a realization) be a binary vector which
denotes the availability or unavailability (for invitation) of each
network node in session t ∈ [1,T ]. We take a Bayesian approach and
assume that there is a known prior probability distribution Φ over
realizations ϕt such that p(ϕt ) := P[Φ = ϕt ]. In our domain, this
prior distribution is represented using a Markov Network. We assume
that the realization ϕt for each session t ∈ [1,T ] is drawn i.i.d. from
the prior distribution Φ, i.e., the presence/absence of homeless youth
at the shelter in every session t ∈ [1,T ] is assumed to be an i.i.d.
sample from Φ. We further assume that while the prior distribution Φ
is provided to the CAIM problem as input, the complete i.i.d. draws
from this distribution (i.e., the realizations ϕt ∀t ∈ [1,T ]) are not
observable. This is because while querying the availability of a small
number of nodes (∼3-4) is feasible, querying each node in the social
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network (which can have 150-160 nodes) for each session/day (to
completely observe ϕt ) requires a lot of work which is not possible
with the shelters limited resources [13].

In each session t ∈ [1,T ], a maximum of L actions can be taken,
each of which can be of three possible types: queries, invites and
end-session actions. Query action qa in session t ∈ [1,T ] ascertains
the availability/unavailability of a subset of nodes a (∥a∥ ⩽ Qmax ,
the maximum query size) in session t with certainty. Thus, query
actions in session t provide partial observations about the realization
of nodes ϕt in session t . On the other hand, invite actionma invites a
subset of nodes a ⊂ V (∥a∥ ⩽ K) to the intervention. Upon taking an
invite action, we observe which invited nodes are present (according
to ϕt ) in the session and which of them accepted our invitation. Each
invited node that is present accepts the invitation with a probability
ϵ . We refer to the nodes that accept our invitation as “locked nodes"
(since they are guaranteed to attend the intervention). Finally, we
can also take an end-session action, if we choose not to invite/query
any more nodes in that session.

The observations received from query and invite actions (end-
session action provides no observation) taken in a session allows
us to update the original prior distribution Φ to generate a posterior
distribution Φ

pos
t (i) ∀i ∈ [0,L] for session t (where i actions have

been taken in session t so far). These posteriors can then be used
to decide future actions that need to be taken in a session. Note
that for every session t , Φpos

t (0) = Φ, i.e., at the beginning of each
session, we start from the original prior distribution Φ and then get
new posteriors every time we take an action in the session.

Informally then, given a friendship based social network G =
(V ,E), the integers T , K , L, Qmax and ϵ , and prior distribution Φ,
the goal of CAIM is to find a policy for choosing L sequential actions
for T sessions s.t. the expected influence spread (according to our
influence model) achieved by the set of locked nodes (i.e., nodes
which finally attend the intervention) is maximized.

Let Q = {qa s.t. 1 ⩽ ∥a∥ ⩽ Qmax } denote the set of all possible
query actions that can be taken in any given session t ∈ [1,T ].
Similarly, let M = {ma s.t. 1 ⩽ ∥a∥ ⩽ K} denote the set of all
possible invite actions that can be taken in any given session t ∈
[1,T ]. Also, let E denote the end-session action. Let At

i ∈ Q∪M∪E
denote the ith action (i ∈ [1,L]) chosen by CAIM’s policy in session
t ∈ [1,T ].

Upon taking action At
i (i ∈ [1,L], t ∈ [1,T ]), we receive obser-

vations which allow us to generate posterior distribution Φ
pos
t (i).

Denote by Mt
i the set of all locked nodes after the ith action is

executed in session t . Denote by ∆ the set of all possible poste-
rior distributions that we can obtain during the CAIM problem.
Denote by Γ all possible sets of locked nodes that we can ob-
tain during the CAIM problem. Finally, we define CAIM’s policy
Π : ∆ × Γ × [0,L] × [1,T ] → Q ∪M ∪ E as a function that takes in
a posterior distribution, a set of locked nodes, the number of actions
taken so far in the current session, and the session-id as input, and
outputs an action At

i for the current timestep.

PROBLEM 1. CAIM Problem Given as input a social network
G = (V ,E) and integers T , K , L, Qmax and ϵ , and a prior dis-
tribution Φ (as defined above), denote by R(MT

L ) the expected to-
tal influence spread (i.e., number of nodes influenced) achieved
by nodes in MT

L (i.e., locked nodes at the end of T sessions). Let

EMT
L ∼Π[R(MT

L )] denote the expectation over the random variable

MT
L , where MT

L is updated according to actions recommended by
policy Π(Φpos

T (L − 1),MT
L−1,L − 1,T ). More generally, in session

t ∈ [1,T ], Mt
i ∀i ∈ [0,L] is updated according to actions recom-

mended by policy Π(Φpos
t (i−1),Mt

i−1, i−1, t). Then, the objective of
CAIM is to find an optimal policy Π∗ = arдmaxΠEMT

L ∼Π[R(MT
L )].

We now theoretically analyze the CAIM problem. Due to lack of
space, some proofs are in the appendix1.

LEMMA 1. The CAIM problem is NP-Hard.

PROOF. Consider an instance of the CAIM problem with prior
probability distribution Φ that is the realization ϕ∗ with probability
1, where ϕ∗ is a vector of all 1s. Such a problem reduces to the stan-
dard influence maximization problem, wherein we need to find the
optimal subset of K nodes to influence to have maximum influence
spread in the network. But, the standard influence maximization
problem is an NP-Hard problem, making CAIM NP-Hard too. □

Some NP-Hard problems exhibit nice properties that enable ap-
proximation guarantees for them. [6] introduced adaptive submod-
ularity, the presence of which would ensure that a simple greedy
algorithm provides a (1−1/e) approximation w.r.t. the optimal CAIM
policy. However, we show that while CAIM can be cast into the adap-
tive stochastic optimization framework of [6], our objective function
is not adaptive submodular, because of which their Greedy algorithm
does not have a (1 − 1/e) approximation guarantee.

LEMMA 2. The objective function of CAIM is not adaptive sub-
modular.

These theorems show that CAIM is a computationally hard prob-
lem and it is difficult to even obtain any good approximate solutions
for it. In this paper, we model CAIM as a POMDP.

POMDP MODEL
States A POMDP state consists of four entities s =

⟨ϕ,M,numAct , sessID⟩. Here, sessID ∈ [1,T ] identifies the session
we are in. Also, numAct ∈ [0,L] determines the number of actions
that have been taken so far in session sessID. M denotes the set of
locked nodes so far (starting from the first session). Finally, ϕ is the
node realization ϕsessID in session sessID. In our POMDP model,
states with sessID = T and numAct = L are terminal states, since
they represent the end of all sessions.

Actions A POMDP action is a tuple a = ⟨S, type⟩. Here, type is
a symbolic character which determines whether a is a query action
(i.e., type = q), an invite action (i.e., type = i) or an end-session
action (i.e., type = e). Also, S ⊂ V denotes the subset of nodes that
is queried (type = q) or invited (type = i). If type = q, the size of
subset ∥S ∥ ∈ [1,Qmax ]. Similarly, if type = i, ∥S ∥ ∈ [1,K] . Finally,
if type = e, subset S is empty.

Observations Upon taking a query action a = ⟨S,q⟩ in state s =
⟨ϕ,M,numAct , sessID⟩, we receive an observation that is completely
determined by state s. In particular, we receive the observation oq =
{ϕ(v) ∀v ∈ S}, i.e., the availability status of each node in S . And, by
taking an invite action a = ⟨S, i⟩ in state s = ⟨ϕ,M,numAct , sessID⟩,
1Appendix is available at https://www.dropbox.com/s/d9p6fal7kf5tfn9/appendix.pdf

https://www.dropbox.com/s/d9p6fal7kf5tfn9/appendix.pdf
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we receive two kinds of observations. Let Γ = {v ∈ S s.t. ϕ(v) =
1} denote the set of available nodes in invited set S . First, we get
observation o1i = {ϕ(v) ∀v ∈ S} which specifies the availability
status of each node in invited set S . We also get an observation
o2i = {b(v) ∀v ∈ Γ} for each available node v ∈ Γ, which denotes
whether node v accepted our invitation and joined the locked set of
nodes (b(v) = 1) or not (b(v) = 0). Finally, the end-session action
does not generate any observations.

Rewards We only get rewards when we reach terminal states
s ′ = ⟨ϕ,M,numAct , sessID⟩ with sessID = T , numAct = L. The
reward attained in terminal state s ′ is the expected influence spread
(as per our influence model) achieved by influencing nodes in the
locked set M of s ′.

Transition And Observation Probabilities Due to our expo-
nential sized state and action spaces, maintaining transition and
observation probability matrices is not feasible. Hence, we follow
the paradigm of large-scale online POMDP solvers [20] by using a
generative model Λ(s,a) ∼ (s ′,o, r ) of the transition and observation
probabilities. This generative model allows us to generate on-the-fly
samples from the exact distributions T (s ′ |s,a) and Ω(o |a, s ′) at very
low computational costs. In our generative model, the state under-
goes transitions as follows. On taking a query action, we reach a state
s ′ which is the same as s except that s ′.numAct = s .numAct + 1. On
taking an invite action ⟨S, i⟩, we reach s ′ which is the same as s ex-
cept that s ′.numAct = s .numAct +1, and s ′.M is s .M appended with
nodes of S that accepted the invitation. Note that the binary vector ϕ
stays unchanged in either case (since the session does not change).
Finally, on taking the end-session action, we start a new session by
transitioning to state s ′ s.t., s ′.numAct = 0, s ′.sessID = s .sessID +1,
s ′.M = s .M and s ′.ϕ is resampled i.i.d. from the prior distribution
Φ. Note that the components M , numAct and sessID of a state are
fully observable.

Initial Belief State The prior distribution Φ, along with other
completely observable state components (such as sessID = 1),
numAct = 0, and an empty locked set M = {}) forms our initial
belief state.

CAIMS: CAIM SOLVER
Our POMDP algorithm is motivated by the design of FV-POMCP, a
recent online POMDP algorithm [1]. Unfortunately, FV-POMCP has
several limitations which make it unsuitable for solving the CAIM
problem. Thus, we propose CAIMS, a Monte-Carlo (MC) sampling
based online POMDP algorithm which makes key modifications
to FV-POMCP, and solves the CAIM problem for real-world sized
networks. Next, we provide a brief overview of POMCP, and its
extension FV-POMCP.

POMCP POMCP [20] uses UCT based Monte-Carlo tree search
(MCTS) [3] to solve POMDPs. At every stage, given the cur-
rent belief state b, POMCP incrementally builds a UCT tree that
contains statistics that serve as empirical estimators (via MC
samples) for the POMDP Q-value function Q(b,a) = R(b,a) +∑
z
P(z |b,a)maxa′Q(b ′,a′). The algorithm avoids expensive belief

updates by maintaining the belief at each UCT tree node as an
unweighted particle filter (i.e., a collection of all states that were
reached at that UCT tree node via MC samples). In each MC simu-
lation, POMCP samples a start state from the belief at the root node

of the UCT tree, and then samples a trajectory that first traverses
the partially built UCT tree, adds a node to this tree if the end of
the tree is reached before the desired horizon, and then performs a
random rollout to get one MC sample estimate of Q(b,a). Finally,
this MC sample estimate of Q(b,a) is propagated up the UCT tree
to update Q-value statistics at nodes that were visited during this
trajectory. Note that the UCT tree grows exponentially large with
increasing state and action spaces. Thus, the search is directed to
more promising areas of the search space by selecting actions at
each tree node h according to the UCB1 rule [10], which is given
by: a = arдmaxaQ̂(bh ,a) + c

√
loд(Nh + 1)/nha . Here, Q̂(bh ,a) rep-

resents the the Q-value statistic (estimate) that is maintained at node
h in the UCT tree. Also, Nh is the number of times node h is visited,
and nha is the number of times action a has been chosen at tree
node h (POMCP maintains statistics for Nh and nha∀a ∈ A at each
tree node h). While POMCP handles large state spaces (using MC
belief updates), it is unable to scale up to large action sizes (as the
branching factor of the UCT tree blows up). We validate POMCP’s
poor scale-up performance in our experiments.

FV-POMCP FV-POMCP extends POMCP to deal with large ac-
tion spaces. It assumes that the action space of the POMDP can be
factorized into a set of ℓ factors, i.e., each action a can be decom-
posed into a set of sub-actions al∀l ∈ [1, ℓ]. Under this assumption,
the value function of the original POMDP is decomposable into a
set of overlapping factors. i.e., Q(b,a) = ∑

l ∈[1, ℓ]
αlQl (b,al ), where

αl (∀l ∈ [1, ℓ]) are factor-specific weights. FV-POMCP maintains a
single UCT tree (similar to standard POMCP), but it differs in the
statistics that are maintained at each node of the UCT tree. Instead
of maintaining Q̂(bh ,a) and nha statistics for every action in the
global (unfactored) action space at tree node h, it maintains a set of
statistics that estimates the values Q̂l (bh ,al ) and nhal ∀l ∈ [1, ℓ].

Joint actions are selected by the UCB1 rule across all factored

statistics, i.e., a = arдmaxa
∑

l ∈[1, ℓ]
Q̂l (bh ,al )+c

√
loд(Nh + 1)/nhal .

This maximization is efficiently done using variable elimination
(VE) [7], which exploits the action factorization appropriately. Thus,
FV-POMCP achieves scale-up by maintaining fewer statistics at each
tree node h, and by using VE to find the maximizing joint action.

However, there are two limitations which makes FV-POMCP
unsuitable for solving CAIM. First, the VE procedure used in FV-
POMCP (as described above) may return an action (i.e., a set of
nodes) which is infeasible in the CAIM problem (e.g., the action
may have more than K nodes). We elaborate on this point later.
Second, FV-POMCP uses unweighted particle filters to represent
belief states, which becomes highly inaccurate with exponentially
sized state spaces in CAIM. We address these limitations in CAIMS.

CAIMS
CAIMS is an online Monte-Carlo sampling based POMDP solver
that uses UCT based Monte-Carlo tree search to solve the CAIM
problem. Similar to FV-POMCP, CAIMS also exploits action factor-
ization to scale up to large action spaces. We now explain CAIMS’s
action factorization.

Action Factorization Real world social networks generally ex-
hibit a lot of community structure, i.e., these networks are composed
of several tightly-knit communities (partitions), with very few edges
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going across these communities [19]. This community structure
dictates the action factorization in CAIMS. As stated before, the
POMDP model has each action of the form ⟨S, type⟩, where S is
a subset of nodes (that are being queried or invited). This (sub)set
S can be represented as a boolean vector ®S (denoting which nodes
are included in the set). Let Qq ( ®S) denote the Q-value of the query
action ⟨S,q⟩, Qi ( ®S) denote the Q-value of the invite action ⟨S, i⟩ and
let Qe denote the Q-value of the end-session action ⟨{}, e⟩. Now,
suppose the real-world social network is partitioned into ℓ parti-
tions (communities) P1, P2, · · · Pℓ . Let ®SPx denote the sub-vector
of ®S corresponding to the xth partition. Then, the action factor-
ization used is: Qq ( ®S) =

∑ℓ
x=1Q

Px
q ( ®SPx ) for query actions and

Qi ( ®S) =
∑ℓ
x=1Q

Px
i ( ®SPx ) for invite actions.

Intuitively, QPx
i ( ®SPx ) can be seen as the Q-value of inviting only

nodes given by ®SPx (and no other nodes). Now, if querying/inviting
nodes of one partition has negligible effect/influence on the other
partitions, then the Q-value of the overall invite action ⟨S, i⟩ can be
approximated by the sum of the Q-values of the sub-actions

〈
SPx , i

〉
.

The same holds for query actions. We now show that this action fac-
torization is appropriate for CAIM as it introduces minimal error into
the influence spread calculations for stochastic block model (SBM)
networks, which mimic many properties of real-world networks
[19].

THEOREM 3. Let I(S) denote the expected influence in the
whole network when nodes of set S are influenced, and we have
one round of influence spread. For an SBM network with n nodes
and parameters (p,q) that is partitioned into ℓ communities, the
difference between the true and factored expected influences can
be bounded as E

[
maxS

���I(S) −∑ℓ
x=1 I(SPx )

���] ≤ qn2
(
1 − 1

ℓ

)
pm ,

where pm = maxe ∈E p(e) is the maximum propagation probability.
Note that the (outer) expectation is over the randomness in the SBM
network model.

This action factorization allows us to maintain separate Q-value
statistics (Q̂Px

type ( ®SPx ) ∀type ∈ {q, i, e}) for each factor (i.e., network
community) at each node of the UCT tree maintained by CAIMS.
However, upon running MC simulations in this UCT tree, we acquire
samples of onlyQtype (i.e., rewards of the joint un-factored actions).
We learn factored estimates QPx

type from estimates Qtype of the un-
factored actions by using mixture of experts optimization [1], i.e. we
estimate the factors as Q̂Px

type ( ®SPx ) = αPx E[Qtype ( ®S)| ®SPx ], where
this expectation is estimated by using the empirical mean. Please
refer to [1] for more details. We now describe action selection in the
UCT tree.

Action Selection At each node in the UCT tree, we use the
UCB1 rule (over all factors) to find the best action. Let nq

h ®SPx
(or ni

h ®SPx
) denote the number of times a query (or invite) action

with sub-action ®SPx has been taken from node h of the UCT tree.
Let Nh denote the number of times tree node h has been visited.
The best query action to be taken is given as

〈
Sq ,q

〉
, where ®Sq =

arдmax ∥ ®S ∥1≤Qmax

∑ℓ
x=1 Q̂

Px
q (bh , ®SPx ) + c

√
loд(Nh + 1)/n

q
h ®SPx

.

Similarly, the best invite action to be taken is given as

⟨Si , i⟩, where ®Si = arдmax ∥ ®S ∥1≤K−|M |
∑ℓ
x=1 Q̂

Px
i (bh , ®SPx ) +

c
√
loд(Nh + 1)/nih ®SPx

(where M is the set of locked nodes at tree

node h). Let Vq and Vi denote the value attained at the maximizing
query and invite actions, respectively. Finally, let Ve denote the
value of the end-session action, i.e. Ve = Q̂e + c

√
loд(Nh + 1)/neh

where neh is the number of times the end-session action has been
taken from tree node h. Then, the values Vq ,Vi and Ve are compared
and the action corresponding tomax(Vq ,Vi ,Ve ) is chosen.

Improved VE Note that the UCB1 equations to find maxi-
mizing query/invite actions (as described above) are of the form
arдmax ∥ ®a ∥1≤z

∑ℓ
x=1 fx (®ax ) (where ®a ∈ {0, 1}n). Unfortunately,

plain application of VE (like FV-POMCP) to this results in infea-
sible solutions which may violate the L-1 norm constraint. Thus,
FV-POMCP’s VE procedure may not produce feasible solutions for
CAIM.

CAIMS addresses this limitation by using two adjustments. First,
we incorporate this L-1 norm constraint as an additional factor in
the objective function: arдmax ®a∈{0,1}n

∑ℓ
x=1 fx (®ax ) + fc (®a). This

constraint factor fc ’s scope is all the n variables (as it represents
a global constraint connecting actions selected across all factors),
and hence it can be represented using a table of size O(2n ) in VE.
Unfortunately, the exponentially sized table of fc eliminates any
speed-up benefits that VE provides, as the induced width of the
tree formed (on running VE) will be n, leading to a worst possible
time-complexity of O(2n ).

To resolve this, CAIMS leverages a key insight which allows VE
to run efficiently even with the additional factor fc . The key idea
is that, if all variables of a community are eliminated at once, then
both (i)fc ; and (ii) the factors derived from a combination of fc and
other community-specific factors during such elimination, can be
represented very concisely (using just tables of size z + 1 elements),
instead of using tables of size O(2n ). This fact is straightforward to
see for the original constraint factor fc (as fc ’s table only depends
on ∥ ®a∥1, it has value 0 if ∥ ®a∥1 ≤ z and −∞ otherwise). However,
it is not obvious why this holds for derived factors, which need to
maintain optimal assignments to community-specific variables, for
every possible combination of un-eliminated variable values (thereby
requiring O(2n ) elements). However, it turns out that we can still
represent the derived factors concisely. The key insight is that even
for these derived factors, all variable assignments with the same L-1
norm have the same value (Lemma 4). This allows us to represent
each of these derived factors as a table of only z + 1 elements (as we
need to store one unique value when the L-1 norm is at most z, and
we use −∞ otherwise).

In more detail, the exact procedure of the modified VE algorithm
is as follows. For the forward pass, we compute max ®a

∑ℓ
x=1 fx (®ax )+

fc (®a). We know that fc depends only on the L-1 norm of ®a, so let us
represent it as such, i.e. as fc (∥ ®a∥1). Also note that, the communities
are disjoint, because of which each action bit ai (of action ®a) appears
in the argument of exactly one factor fx (other than the constraint
factor fc ).

As mentioned before, we eliminate all variables of a community
at once. So, to eliminate the first block of variables, we compute
max ®a1 f1(®a1)+ fc (∥ ®a∥1) = ψ1(∥ ®a−1∥1), where ®a−1 denotes all action
bits of ®a except those in ®a1. Note that, in the RHS of this expression,
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we use ∥ ®a−1∥1 as opposed to ®a−1 itself because the LHS (before
computing the max) depends only on ®a1 and ∥ ®a1∥1 + ∥ ®a−1∥1. Also,
note that for ∥ ®a−1∥1 > z, we have ∥ ®a∥1 > z making fc (∥ ®a∥1) and
ψ1(∥ ®a−1∥1) equal to −∞.

To make this more concrete, Table 1 shows how ψ1 is exactly
computed. Here,v(x )i denotes the maximum value of fx when exactly
i bits of ®ax are 1, and sx denotes the number of bits in ®ax .

∥ ®a−1∥1 ψ1(∥ ®a−1∥1)

0 max
(
v
(1)
0 + fc (0),v(1)1 + fc (1), · · ·v(1)s1 + fc (s1)

)
1 max

(
v
(1)
0 + fc (1),v(1)1 + fc (2), · · ·v(1)s1 + fc (s1 + 1)

)
...

...

z v
(1)
0 + fc (z)

> z −∞
Table 1: Factor obtained on (first) block elimination

Apart from computing the maximum objective value (for-
ward pass), we also need to compute the maximizing assign-
ment of the problem (backward pass). For this, we maintain an-
other function µ1(∥ ®a−1∥1) which keeps track of the value of ®a1 at
which this maximum is attained (for each value of ∥ ®a−1∥1), i.e.
µ1(v) = arдmax ®a1

[
f1(®a1) + fc (∥ ®a1∥1 +v)

]
. After eliminating vari-

ables of the first community, we are left with max ®a−1
∑ℓ
x=2 fx (®ax )+

ψ1(∥ ®a−1∥1). We repeat the same procedure and eliminate ®a2 by com-
puting max ®a2 f2(®a2) + ψ1(∥ ®a−1∥1), to obtain ψ2(∥ ®a−1,−2∥1). Note
that, again,ψ2 depends only on the L-1 norm of the remaining vari-
ables. Also, for ∥ ®a−1,−2∥1 > z, ψ2 becomes −∞. In a similar way,
this holds for the remaining generated factors, giving Lemma 4.

LEMMA 4. Let ψi (®v) denote the ith factor generated during
CAIMS’s VE. Then, ψi (®v1) = ψi (®v2) if ∥v1∥1 = ∥v2∥1. Further
ψi (®v) = −∞ if ∥v ∥1 > z.

Once we complete the forward pass, we are left withψℓ(0) which
is the maximum value of the objective function. Then, as in standard
VE, we backtrack and use the µx functions to obtain the maximizer
arдmax ®a

∑ℓ
x=1 fx (®ax )+ fc (∥ ®a∥1), i.e. µℓ(0) gives us the value of ®aℓ ,

then µℓ−1(∥ ®aℓ ∥1) gives us the value of ®aℓ−1, µℓ−2(∥ ®aℓ ∥1 + ∥ ®aℓ−1∥1)
gives us the value of ®aℓ−2 and so on.

Observe that to compute the ith derived factor, we needed to com-
pute max ®ai fi (®ai ) +ψi−1(∥ ®a−1,−2, · · ·−(i−1)∥1) = ψi (∥ ®a−1,−2, · · ·−i ∥1).
And for this, we just need to compute v(i)s for each s = 0, 1, · · · si , as
evident from Table 1. This takes time O(2si ), where si denotes the
size of the ith community. Hence, the compact representations allow
CAIMS to efficiently run VE in time

∑ℓ
i=1O (2si ) even after adding

the global constraint factor fc (Lemma 5). In fact, this is the best
one can do, because any algorithm will have to look at all values of
each community-specific factor in order to solve the problem.

LEMMA 5. CAIMS’s VE has time-complexity
∑ℓ
i=1O (2si ), where

si is the size of the ith factor (community). There exists no procedure
with better time complexity.

Markov Net Beliefs FV-POMCP uses unweighted particle filters
to represent beliefs, i.e. a belief is represented by a collection of
states (also known as particles), wherein each particle has an equal
probability of being the true state. Unfortunately, due to CAIM’s
exponential state-space, the particle filter representation of belief
states becomes highly inaccurate which leads to losses in solution
quality.

To address this limitation, CAIMS makes the following assump-
tion: availability/unavailability of network nodes is positively corre-
lated with the availability/unavailability of their neighboring nodes
in the social network. This assumption is reasonable because home-
less youth usually go to shelters with their friends [15]. Thus, the
confirmed availability of one homeless youth increases the likeli-
hood of the availability of his/her friends. Under this assumption,
the belief state in CAIM can be represented using a Markov Net-
work. Formally, the belief is given as b = ⟨N,M,numAct , sessID⟩,
where N is a Markov Network representing our belief of the true
realization ϕ (note that the other three components of a state are
observable). With the help of this Markov Network, we maintain
exact beliefs throughout the POMCP tree of CAIMS. As mentioned
before, the prior distribution Φ that serves as part of the initial belief
state is also represented using a Markov Network N0. This prior
can be elicited from field observations made by homeless shelter
officials, and can be refined over multiple runs of CAIMS. In our
simulations, the social network structure G = (V ,E) is used as a
surrogate for the Markov network structure, i.e., the Markov net-
work only has potentials over two variables/nodes (one potential
for each pair of nodes connected by an edge in social network G).
Thus, we start with the initial belief as ⟨N0, {}, 0, 1⟩. Upon taking
actions a = ⟨S, type⟩ and receiving observations o, the belief state
can be updated by conditioning the Markov network on the observed
variables (i.e., by conditioning the presence/absence of nodes based
on observations received from past query actions taken in the cur-
rent session). This helps us maintain exact beliefs throughout the
POMCP tree efficiently, which helps CAIMS take more accurate
decisions.

EVALUATION
We show simulation results on artificially generated (and real-world)
networks to validate CAIMS’s performance in a variety of settings.
We also provide results from a real-world feasibility study involving
54 homeless youth which shows the real-world usability of CAIMS.
For our simulations, all the networks were generated using Net-
workX library [8]. All experiments are run on a 2.4 GHz 8-core
Intel machine having 128 GB RAM. Unless otherwise stated, we set
L = 3, Qmax = 2, K = 2, and all experiments are averaged over 50
runs. All simulation results are statistically significant under t-test
(α = 0.05).

Baselines We use two different kinds of baselines. For influence
maximization solvers, we use Greedy [9], the gold-standard in in-
fluence maximization as a benchmark. We subject Greedy’s chosen
nodes to contingencies drawn from the same prior Φ distribution
that CAIMS uses. We also compare against the overprovisioning
variant of Greedy (Greedy+) where instead of selecting K nodes,
we select 2K nodes and influence the first K nodes that accept the
invitation. This was proposed as an ad-hoc solution in [26] to tackle
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(a) SBM Networks (b) PA networks

Figure 3: Influence Spread Comparison

(a) Scale up in T (b) Scale up in K

Figure 4: Scale Up Results

contingencies, and hence, we compare CAIMS against this. We also
compare CAIMS against state-of-the-art POMDP solvers such as
SARSOP and POMCP. Unfortunately, FV-POMCP cannot be used
for comparison as its VE procedure is not guaranteed to satisfy the
K budget constraint used inside CAIMS.

Solution Quality Comparison Figures 3a, 3b and 6a compares
influence spread of CAIMS, Greedy, Greedy+ and POMCP on SBM
(p = 0.4,q = 0.1), Preferential Attachment (PA) (n = 5) and real-
world homeless youth networks (used in [25]), respectively. We se-
lect K = 2 nodes, and setT = 6,L = 3 for CAIMS. The X-axis shows
the size of the networks and the Y-axis shows the influence spread
achieved. Figures 3a and 3b show that on SBM and PA networks,
POMCP runs out of memory on networks of size 120 nodes. Fur-
ther, these figures also show that CAIMS significantly outperforms
Greedy and Greedy+ on both SBM (by ∼73%) and PA networks
(by ∼58%). Figure 6a shows that even on real-world networks of
homeless youth (which had ∼160 nodes each) , POMCP runs out of
memory, while CAIMS outperforms Greedy and Greedy+ by ∼25%.
This shows that state-of-the-art influence maximization solvers per-
form poorly in the presence of contingencies, and a POMDP based
method (CAIMS) outperforms them by explicitly accounting for
contingencies. Figures 3a and 3b also show that Greedy+ performs
worse than Greedy.

Scale up Having established the value of POMDP based meth-
ods, we now compare CAIMS’s scale-up performance against other
POMDP solvers. Figures 4a and 4b compares the runtime of CAIMS,
POMCP and SARSOP on a 100 node SBM network with increasing
values of T and K respectively. The X-axis shows T (or K) values
and the Y-axis shows the influence spread. Figure 4a shows that both
POMCP and SARSOP run out of memory at T = 2 sessions. On the
other hand, CAIMS scales up gracefully to increasing number of
sessions. Similarly, Figure 4b (T = 10) shows that SARSOP runs out
of memory at K = 1, whereas POMCP runs out memory at K = 2,

(a) Influence Spread (b) Runtime

Figure 5: Value of using Markov Networks

(a) Homeless Youth Networks (b) Feasibility Trial

Figure 6: Real World Experiments

whereas CAIMS scales up to larger values of K . These figures es-
tablish the superiority of CAIMS over its baselines as it outpeforms
them over a multitude of parameters and network classes.

Markov Nets We illustrate the value of Markov networks to
represent belief states in CAIMS. We compare CAIMS with and
without Markov nets (in this case, belief states are represented using
unweighted particle filters) on SBM networks of increasing size.
Figure 5a shows influence spread comparison between CAIMS and
CAIMS-Particle (the version of CAIMS which uses unweighted
particle filters to represent belief states). Figure 5b shows runtime
comparison of CAIMS and CAIMS-Particle on the same SBM net-
works. These figures shows that using a more accurate representation
for the belief state (using Markov networks) improved solution quali-
ties by ∼15% at the cost of ∼3X slower runtime. However, the loss in
speed due to Markov networks is not a concern (as even on 160 node
networks, CAIMS with Markov networks runs in ∼75 seconds).

Real World Trial We conducted a real-world feasibility trial to
test out CAIMS with a homeless shelter in a large American city.
We enrolled 54 homeless youth from this shelter into our trial and
constructed a friendship based social network for these youth (using
social media contacts). The prior Φ was constructed using field
observations made by shelter officials. We then executed policies
generated by CAIMS, Greedy and Greedy+ on this network (K = 4,
Qmax = 4 and L = 3) on three successive days (T = 3) in the
shelter to invite homeless youth to attend the intervention. In reality,
14 out of 18 invitations (∼80%) resulted in contingency events,
which illustrates the importance of accounting for contingencies in
influence maximization. Figure 6b compares influence spread (in
simulation) achieved by nodes in invited sets selected by CAIMS,
Greedy and Greedy+. This figure shows that CAIMS is able to spread
31% more influence as compared to Greedy and Greedy+.
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CONCLUSION
This paper presents CAIMS, a contingency-aware influence maxi-
mization algorithm for selecting key influencers in a social network.
Specifically, this paper makes the following five contributions: (i) we
propose the Contingency-Aware Influence Maximization problem
and provide a theoretical analysis of the same; (ii) we cast this prob-
lem as a Partially Observable Markov Decision Process (POMDP);
(iii) we propose CAIMS, a novel POMDP planner which leverages
a natural action space factorization associated with real-world social
networks; (iv) we provide extensive simulation results to compare
CAIMS with existing state-of-the-art influence maximization algo-
rithms; and (v) we test CAIMS in a real-world feasibility trial which
confirms that CAIMS is indeed a usable algorithm in the real world.
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