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ABSTRACT
Security efforts for wildlife monitoring and protection of endan-

gered species (e.g., elephants, rhinos, etc.) are constrained by limited

resources available to law enforcement agencies. Recent progress in

Green Security Games (GSGs) has led to patrol planning algorithms

for strategic allocation of limited patrollers to deter adversaries

in environmental settings. Unfortunately, previous approaches to

these problems suffer from several limitations. Most notably, (i) pre-

vious work in GSG literature relies on exploitation of error-prone

machine learning (ML) models of poachers’ behavior trained on

(spatially) biased historical data; and (ii) online learning approaches

for repeated security games (similar to GSGs) do not account for

spatio-temporal scheduling constraints while planning patrols, po-

tentially causing significant shortcomings in the effectiveness of

the planned patrols. Thus, this paper makes the following novel

contributions: (I) We propose MINION-sm, a novel online learning

algorithm for GSGs which does not rely on any prior error-prone

model of attacker behavior, instead, it builds an implicit model of

the attacker on-the-fly while simultaneously generating scheduling-

constraint-aware patrols. MINION-sm achieves a sublinear regret

against an optimal hindsight patrol strategy. (II) We also propose

MINION, a hybrid approach where our MINION-sm model and an

ML model (based on historical data) are considered as two patrol

planning experts and we obtain a balance between them based on

their observed empirical performance. (III) We show that our online

learning algorithms significantly outperform existing state-of-the-

art solvers for GSGs.
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1 INTRODUCTION
Poaching is a serious threat to wildlife conservation around the

world and can lead to the extinction of several important species

and complete destruction of ecosystems [6]. Specifically, as a result

of poaching, tigers are now found in less than 7% of their historical

range, and three out of nine tiger subspecies have already been

driven to extinction [9, 28]. Not only are the effects of poaching

detrimental to animal species, the illegal trade of wildlife also helps

fund armed conflict by extremist groups around the world, and it

has become a 213 billion dollar industry [1].

As a result, efforts have been made by law enforcement agencies

(i.e., park rangers) in many countries to protect endangered animals

from poaching. The most direct and commonly used approach is

conducting foot patrols [23]. However, given the limited human

resources and the vast areas in need of protection, improving the

efficiency of the patrols remains a major challenge [14].

Security games are well known to be effective models of protect-

ing valuable targets against an adversary and have been explored

extensively at AAMAS [3, 17, 20, 24]. Recently, there has been a lot

of progress in the field of Green Security Games (GSGs), which has

led to the development of several algorithms which serve as game-

theoretic decision aids to optimize the use of limited human patrol

resources to combat poaching [11, 12, 15, 16, 27]. The basic premise

behind most of this work is that repeated interactions between pa-

trollers and poachers provides the opportunity to gather data which

can be used to learn models of poacher behavior [7]. Thus, most

previous algorithms design patrol routes assuming poachers attack

according to a fixed "learnable" model (which could either have a

functional form [7, 27], or it could be a black-box model [11, 31]).

Most of these algorithms then try to solve a repeated Stackelberg

game, where the patrollers (defenders) conduct randomized patrols

against poachers (attackers) while balancing the priorities of differ-

ent locations in the park. Unfortunately, this approach suffers from

serious shortcomings, which impedes usability in the real-world.

In particular, the GSG approach can be expected to provide good

results only if the collected historical data is a good representation

of the actual poaching activities that occurred in the past (and those

that will occur in the future), which would allow us to learn an

accurate model for attacker behavior. Unfortunately, in the wildlife

poaching domain, it is extremely difficult to know ahead of time

whether the learned model of attacker behavior is accurate or not

(over the entire protected area). Due to logistical issues, several

patrollers only conduct patrols either close to their sparsely spread

patrol posts, or in areas that are easily accessible by them. This issue

is so prevalent that it has a special name in ecological research: the

silent victim problem [22]. As a result, the poaching data collected



in these domains may be highly biased (in a spatial sense). For

example, Figure 1 shows the patrol coverage heatmap in Murchison

Falls National Park in Uganda where the color shade indicates the

intensity of coverage in the past (darker color correspond to higher

patrol levels). Due to such biased data collection, the data sample

might not fairly represent the entire space of the problem [21] and

the learned model of the attacker behavior might have different

prediction accuracy in the park areas that have high vs. low patrol

densities in Figure 1. Thus, it may or may not be optimal to rely on

learned models of attacker behavior in patrol planning, and there

is no straightforward method to determine the optimal course of

action prior to deployment, i.e., whether to use the learnedmodel (or

not) in patrol planning. Moreover, the sub-optimal choice may lead

to arbitrary losses for the defender (as confirmed in our evaluation).

Figure 1: Non-
uniform historical
patrol coverage in
Murchison Falls
National Park im-
plies biases in data
collection by park
rangers

This paper makes three significant

contributions to address these short-

comings in the GSG approach. First,

we propose a novel online learning

algorithm, MINION-sm (a submod-

ule of MultI-expert oNline model for

constraIned patrol plaNning), which

does not rely on any prior model of

attacker behavior, instead it builds

an implicit model of the attacker on-

the-fly. MINION-sm frames the re-

peated security game as an adversar-

ial combinatorial bandit problem and

trades off exploitation of well-known

high-reward patrol routes with ex-

ploration of untried patrol routes to

provide an online policy for generat-

ing randomized patrols. It also takes

into account scheduling constraints

for defender. We prove that MINION-sm achieves sublinear regret

against an optimal hindsight policy, which is the best that an adver-

sarial bandit algorithm can hope for. Second, to model situations

where the trained machine learning (ML) models may be a good

representation of actual poacher behavior, we propose MINION

(MultI-expert oNline model for constraIned patrol plaNning), an

online learner which utilizes any benefits that can be achieved from

exploitation of the learned ML models. Specifically, MINION con-

siders our MINION-sm model and an ML model (based on historical

data) as two patrol planning experts and dynamically combines

the recommendations of both these experts to provide even better

empirical performance. Finally, we evaluate our online learning

algorithms and show that they outperform existing state-of-the-art

GSG solvers by ∼100% on a variety of simulated game settings.

2 RELATEDWORK
We now elaborate on how our work compares to prior literature on

Green Security Games (GSGs) and repeated Stackelberg Security

Games. There has been a lot of effort in GSGs at learning models of

attacker behavior from historical patrolling data, which has then

been used inside Stackelberg game solvers [30]. A lot of initial effort

in this direction assumed attackers behaved according to parametric

models, e.g., Quantal Response [26], Subjective Utility Quantal

Response [7, 8, 33], SHARP model[15], etc., and tried to learn model

parameters which best fit the historical data. Unfortunately, the

assumption of having a fixed model of attacker behavior is quite

restrictive and is not robust to any errors in our knowledge about

the model type. As a result, there has also been recent effort at

learning black-box machine learning models of attacker behavior

from past patrolling data which can be used to plan patrols [11, 13,

31]. Sinha et al. [29] proved sample complexity results for learning

in Stackelberg Security Games which showed that a huge amount

of prior knowledge (historical data) is required to achieve good

performance in the GSG approach. Moreover, as mentioned in the

introduction, the poaching data collected in these domains is highly

biased (in a spatial sense) and as a result, planning patrols based on

this data may lead to arbitrary losses. Moreover, in our work, we

propose online learning approaches which do not rely on past data

to learn attacker models (or at least trade off between (i) relying on

past data; and (ii) online learning approaches), and as we show in

our evaluation section, this may lead to significant improvements

in solution quality.

In the field of repeated Stackelberg Security Games, Klima et al.

[18, 19] solved the problem of patrol planning for repeated border

patrols with online learning algorithms. They provided an experi-

mental analysis of the performance of several well-known online

learning algorithms. However, they emphasized empirical results

and they do not provide theoretical analysis. Balcan et al. [2] solved

repeated Stackelberg Security Games with varying attacker types

captured with different payoff matrices and proposed an online

learning approach, but they assumed perfect rationality of attackers

and complete knowledge of the payoff matrices, which is unrealistic

to expect in the wildlife poaching domain. Blum et al. [4] optimizes

defender strategy with no prior knowledge in repeated Stackelberg

Security Games but they consider a query based model, where they

try to learn good approximations of the payoff matrices with the

least amount of queries, which is an orthogonal setting compared

to our work.

In another closely related work, Xu et al. [32] proposed an online

learning approach to solving repeated Stackelberg Security Games

under no assumptions on the adversary’s behavior. While the prob-

lem that we are solving in this paper is similar to the one considered

in [32], their work do not take into account spatio-temporal sched-

uling constraints while planning patrols. As a result, the generated

patrols are un-implementable in the real-world, and thus, their ap-

proach is not easily usable in the real-world. In our work, we ensure

that our proposed algorithms generates patrols which take into

account several important scheduling constraints. Moreover, Xu

et al. [32] do not take into consideration any prior knowledge and

learn models from scratch, whereas our approach learns whether

models based on prior knowledge are better (or worse) than models

learned on-the-fly and takes decisions accordingly.

3 PROBLEM FORMULATION
Game Description We now describe the patrol route planning

problem considered in this paper. The entire wildlife park area is

planned to be protected in within the patrol plan horizon ofT and is

divided into L distinct locations (grid cells). One of these locations



(a) Patrol Route Schema (b) Time-unrolled Graph

Figure 2: Patrol Planning in Green Security Games

is designated as the patrol post, w.l.o.g., we treat location 1 as the

patrol post throughout the paper. We cast the patrol route planning

problem as a repeated game between a defender (having a single

patrol team) and an attacker (havingM poachers) on L ×T targets

(as we explain below). The game proceeds in D sequential rounds.

We assume that both the defender and the attacker move simul-

taneously in each round of the game. However, consistent with

the literature on repeated games, the defender (and the attacker)

may use their opponent’s actions in prior rounds to optimize the

defender (and the attacker) strategy in the current round. In each

round, the defender plans a patrol route {(l1, t1), . . . (lT , tT )} for
her patrol team, where l and t denote the location and time, respec-

tively. On the other hand, the attacker chooses a set ofM distinct

< l , t > pairs (or targets), i.e., a location and time pair for each of

hisM poachers to attack. As a result of choosing these actions, the

defender gets a payoffU c
i for each covered (patrolled) target which

was attacked by the attacker, and a payoff of Uu
i (Uu

i ≤ U c
i ) for

each target which was uncovered (unpatrolled) but was attacked

by a poacher. We assume that bothU c
i ,U

u
i ∈ [−0.5, 0.5] and their

exact value is unknown to the defender. The goal of the defender

is to design "good" patrol routes (we formalize our exact objective

later) against an adaptive attacker.

Note that our problem setup is slightly different from standard

GSGs, where the primary goal of the defender is to uncover snares

left by the poachers [7, 8]. As a result, a lot of emphasis is placed in

prior GSG work on imperfect detection of snares by the defender

when she patrols a location [26]. While this is an important real-

world issue, we abstract away this complication by assuming that

our defender can detect snares perfectly. In the real-world, this can

be achieved by dividing the wildlife park into smaller-sized areas.

Defender’s Spatio-TemporalConstraintsDue to real-world chal-
lenges, the patrol route (or pure strategy) chosen by the defender

must satisfy certain spatio-temporal constraints. First, locations

patrolled in consecutive time steps in the patrol route must corre-

spond to geographically neighboring locations, otherwise it is not

physically possible for the patrol team to implement that patrol.

Second, any patrol route must originate from and return to the

patrol post (i.e., location 1), as shown in Figure 2(a). We further

assume that the patrol team can traverse at most T locations in

each round of the game (T << L), and thus, the length of every

patrol route must be exactly T . To simplify exposition, we model

this problem using a time-unrolled graphG(u, e), with LT nodes, as

demonstrated in Figure 2(b). Each node u represents a pair < l , t >,
i.e., location l ∈ [L] at time t ∈ [T ] and each directed edge, e , con-
nects a location at time t to another accessible location at time t + 1.

A defender pure strategy in this time-unrolled graph is a “feasible"

path (i.e., path which satisfies spatio-temporal constraints) of length

T , e.g., the blue dashed line in Figure 2(b) denotes a possible pure

strategy for the defender. Similarly, an attacker pure strategy in

this time-unrolled graph is a set ofM graph nodes (note that each

graph node is an < l , t > pair).

Defender’s Objective Note that the defender’s payoffs in a given

round depend only on whether her chosen pure strategy (patrol

route) covers (time-unrolled) graph nodes which were chosen for

attack by the attacker (this is by definition of the termsU c
l andUu

l ).

On the other hand, they do not depend on the exact ordering in

which the graph nodes were patrolled. The time-indexed ordering

of graph nodes (as required by the spatio-temporal constraints) in

defender patrols is important only to ensure implementability of

those patrols.

Thus, to formally define the defender’s objective, we repre-

sent the defender’s patrol route (pure strategy) as a binary vector

v ∈ {0, 1}LT s.t. ∥v ∥1 = T , where each entry vl is 1 if defender

protects graph node l in that patrol route, and 0 otherwise. We

reiterate that all such possible binary vectorsv may not correspond

to implementable patrol routes. However, corresponding to every

feasible patrol route, there is exactly one binary vectorv . We useV

to denote the set of all such valid pure strategies for the defender.

Similarly, we use a ∈ {0, 1}LT s.t. ∥a∥1 ≤ M to denote an attacker

pure strategy, andA to denote the set of all attacker pure strategies.

Given the defender and attacker pure strategies at round d , vd

and ad , the defender’s utility in round d is defined as u(vd ,ad ) =∑
i ∈[LT ]vd,iad,iU

c
i +

∑
i ∈[LT ](1−vd,i )ad,iU

u
i , which can be rewrit-

ten as

∑
i ∈[LT ]vd,iad,i [U

c
i −U

u
i ]+

∑
i ∈[LT ] ad,iU

u
i = vd · rd (ad )+

C(ad ). Consistent with prior work, this utility equation indicates

that defender needs to increase his utility by choosing strategy vd
at each round of the game. rd (ad ) denotes the reward that depends

on the adversary actions.

We aim to maximize defender’s expected utility over D rounds

of the game E
[ ∑D

d=1 u(vd ,ad )
]
; where expectation is taken over

randomness of the strategy. Alternatively, we want to minimize

the defender’s regret as computed in equation 1. The first term

in equation 1 is the static optimal hindsight strategy, and is the

benchmark that we compare our algorithm against. Specifically, it

shows the utility of the best fixed hindsight strategy assuming all

the rd (ad ) values chosen by the adversary are apriori known. This

is the standard notion of regret computation used within adversarial

bandit problems. This is because there are well known results that

show that it is impossible to achieve sub-linear regret against a

hindsight strategy which dynamically changes in every round [5].

Thus, the static optimal hindsight strategy is used as the benchmark,

as it allows for greater computational tractability.

RD = max

v ∈V

D∑
d=1

u(v,ad ) − E
[ D∑
d=1

u(vd ,ad )
]

= max

v ∈V

D∑
d=1

v · rd − E
[ D∑
d=1

vd · rd
] (1)



4 PATROL ROUTE PLANNINGWITH
IMPERFECT PRIOR KNOWLEDGE

In GSG settings, attackers’ behavior is usually represented by ex-

plicit models determined by machine learning methods that con-

sume real-world historical data on illegal activities. These explicit

models provide predictions on the likelihood of attacks on dif-

ferent targets based on the past adversarial actions detected by

defenders who conduct patrols repeatedly to protect the targets.

Consequently, if these historical data on illegal activities (collected

by the defenders) are not a representative sample from the entire

space, ML models might be inaccurate in estimation of attackers’

behavior and pure exploitation of such attackers’ model in patrol

planning models can potentially result in underestimation of at-

tacks in unexplored portions of the space [21] and be detrimental to

the defender. Although there are settings that ML models could be

beneficial for patrol planning, it is extremely difficult to guarantee

the accuracy of the ML models for future deployments prior to the

deployment. So to minimize the risk of undesirable exploitation

of inaccurate (or insufficiently accurate) ML models, we propose a

meta-learning approach that incorporates an online-learner along

with an ML-based patrol planning model. Note that in this paper,

prior knowledge refers to the historical data about adversarial ac-

tions before the initial round of the game. In this section, (i) we

propose an online learning approach for patrol planning when de-

fender’s strategy is constrained, no prior knowledge about past

attacks are available and an implicit model of the attacker has to

be learned on-the-fly, (ii) we discuss an ML-based patrol planning

method where (potentially) imperfect prior knowledge is available,

(iii) we outline our meta-learner approach which obtains the best

patrol planning expert between the two previous methods based

on their empirical performance.

4.1 Expert I: Patrol planning via online
learning

To generate defender strategy based on an implicit model of the

attackers, we propose an online patrol planning algorithm without

any prior knowledge (i.e., historical data before the first round of

the game) for constrained defender which builds upon the FPL-UE

algorithm for repeated security games.

FPL-UE Algorithm The FPL-UE algorithm (follow-the-perturbed-

leader with uniform exploration) proposed in [32] provides the best

strategy in each round of the repeated security games by balancing

exploration and exploitation. This algorithm assumes no scheduling

constraints for defender and no prior knowledge about adversaries,

i.e., reward r̃1,i in the initial round is 0 for all i ∈ [N ], where N
is the number of the targets. In each round d of the experiments,

a random coin is flipped to choose between exploration (with γ
probability) and exploitation (with 1-γ probability) and then the

defender strategyvd is found as follows. They pick a predefined set

of exploration strategies Eexpl = {v1, . . . ,vN } such that target i is
protected in pure strategy vi . If the exploration phase is selected,

the algorithm assures that a strategy is chosen uniformly random

from set Eexpl and each target is covered by
γ
N probability. If the

exploitation phase is selected, vd is the optimized strategy based

on the current estimation of the rewards, r̃d and also a perturbation

element that models the noise on the reward estimations. This noise

is basically a random vector z = (z1, . . . , zN ), zi ∼ exp(η), indepen-
dently drawn from the exponential distribution with parameter η.
After the proposed strategy in each round is deployed, the reward

estimation, r̃d , is updated. The FPL-UE algorithm does not consider

any constraints on the defender actions which makes the strategies

impracticable for deployment in GSGs.

Algorithm 1: The MINION-sm Algorithm

parameters :η ∈ R+,W ∈ Z+,γ ∈ [0, 1], st ∈ [LT ] ,
ds ∈ [LT ];

1 Initialize the estimated reward r̃d = 0 ∈ RLT ;

2 for d = 1, . . . ,D do
3 sample f laд ∈ {0, 1} such that f laд = 0 with prob. γ ;

4 if f laд == 0 then
5 Let j ∈ [LT ] be a uniform randomly sampled target;

6 Draw zd,i ∼ exp(η) independently for all i ∈ [LT ]
and let z = (z1, . . . , zLT );

7 Let α = 0;

8 Let vd be [P(a = st ,b = j), P(a = j,b = ds)];

9 else
10 Draw zd,i ∼ exp(η) independently for all i ∈ [LT ]

and let z = (z1, . . . , zLT );
11 Let α = 1;

12 Let vd be P(a = st ,b = ds) computed from the

mathematical program 2;

13 end
14 Adversary picks rd,i ∈ [0, 1]

LT
and defender plays vd ;

15 Run GR(η,w, r̃ ,d): estimate
1

pd,i
as Kd,i ;

16 Update r̃d,i ← r̃d,i + Kd,ird,i Id,i ; where Id,i = 1 for

vd,i = 1; Id,i = 0 otherwise;

17 end

MINION-sm Algorithm To overcome the limitation of the FPL-

UE algorithm, we propose MINION-sm which recommends the best

defender strategy in the repeated security games with scheduling

constraints. Our MINION-sm algorithm outlined in Algorithm 1

assume no prior knowledge and initializes the estimation of the

reward as 0 (line 1). At each round d of the game, MINION-sm con-

ducts an exploration step with probability γ or plays an exploitative

strategy with probability 1 − γ (lines 4-13).

In the random exploration phase, we suggest a target-level sam-

pling. In other words, we select target i ∈ [LT ] uniformly ran-

dom and then we choose one route from a set of crossing routes

at target i by solving two instances of mathematical program 2,

[P(a = st ,b = i), P(a = i,b = ds)] in linear time (lines 5-8). The

mathematical program P(a,b) in equation 2 gives the optimal path

for the time-unrolled graph shown in Figure 2(b), from the starting

node a to the destination node b (see the third constraint for the

starting and the destination nodes). In our patrol route planning

problem, st and ds denote the patrol post locations at the beginning
and end of the patrol route. The weights in this graph are the esti-

mated reward values. We add a random noise vector z to prevent

the algorithm to choose a fixed route for all the times that a specific

node j is selected in exploration phase (line 6). The mathematical

program P(a,b) is equivalent to the problem of finding the longest



path in a weighted directed acyclic graph, which can be solved

in linear time. E in equation 2 represents the set of the edges in

the time-unrolled graph G(u, e) introduced in section 3. σ+(vd,i )
denotes the in-going edges to the node vd,i and σ

−(vd,i ) denotes
the out-going edges from the node vd,i , in graph G. To find the

longest path (the optimal defender strategy), we used a network

flow approach. Thus, f (e) represents the flow on each edge of the

graph G. If a node is covered by defender, f (e) will be 1 for one of
the in-going edges and one of the out-going edges.

vd = argmax

v ∈V

LT∑
i=1

vd,i (α r̃d,i + z)

subject to

vd,i =
∑
e ∈σ +(vd,i ) f (e) ∀e ∈ E,∀i ∈ [LT ]∑

e ∈σ +(vd,i ) f (e) =
∑
e ∈σ −(vd,i ) f (e) ∀e ∈ E,∀i ∈ [LT ]∑

e ∈σ −(v1,a ) f (e) =
∑
e ∈σ +(vD,b )

f (e) = 1 ∀e ∈ E
f (e),vd,i ∈ {0, 1} ∀i ∈ [LT ],∀e ∈ E

(2)

In our game, a pure strategy is defined as a feasible patrol route

(i.e., a route in graph G) and the set of all possible strategies (all

routes) are O(LT ). Such set is computationally expensive to be

generated for large-size graphs. Additionally, even if we generate

such a large set for the exploration step, the algorithm would suffer

from a slower convergence. So our target-level random sampling

does not require generation of O(LT ) routes and assures that each

target i is covered by pi ≥
γ
LT , as opposed to the strategy-level

uniform sampling which assures pi ≥
γ
LT . Hence, this approach

facilitates scalability of the algorithm and demonstrates similar

performance guarantee as FPL-UE without scheduling constraints.

In the exploitation phase, we choose an optimized patrol route

computed by mathematical program 2 according to the current

estimation of the rewards on all targets up to the current round

(lines 10-12).

Once the defender strategy vd is computed and deployed at

round d , reward rd,i is observed for the targets visited by the de-

fender (line 14). Then the probability pd,i that target i is chosen
at round d by our algorithm is computed based on the algorithm

2 (line 15) and the reward estimations are adjusted and updated

for visited targets as r̃d+1,i = r̃d,i +
rd,i
pd,i
Id,i (line 16). Id,i is the

indicator function that indicates whether target i was chosen by the

defender at round d . The term
rd,i
pd,i
Id,i is an unbiased estimator of

rd,i (i.e., E(
rd,i
pd,i
) = rd,i ). This choice of the reward adjustment is for

convenience of theoretical analysis. Since pd,i cannot be computed

efficiently, we use the Geometric Resampling technique proposed

by [25], outlined in Algorithm 2, where Kd,i =
1

pd,i
denotes the

mean of the geometric distribution with success probability of pd,i
for the first trial.W denotes number of the iteration that the algo-

rithm 2 is run and is an input to the algorithm. The MINION-sm

algorithm continues for D rounds.

Theorem 4.1. The performance of MINION-sm follows the same
theoretical properties as FPL-UE where the regret (i.e., the difference
between the performance of MINION-sm and that of the best fixed

patrolling strategy in hindsight) is upper bounded by:

RD ≤ γMD + 2DTe−W
γ
LT +

T (logLT + 1)

η
+ ηMDmin(M,T )

By taking η =
√

T (log LT+1)
MD min{M,T } , γ =

√
T

√
MD

,W = L
√
TMD log(DT ),

we obtain the upper bound O
(√

TMDmin{M,T } logLT
)
.

Due to space limitations, the full proof of this theorem is omitted.

However, it can be sketched as follows:

Proof sketch. A key step in the proof of is to bound below the

probability that the chosen path will contain a particular node. By

construction of MINION-sm, this value can be bounded below with

γ/LT . By combining this bound with some ideas from the proof

of Theorem 1 from [32] (tailored to our setting) and some further

technical algebra, we can achieve the required regret bound. □

Algorithm 2: The GR Algorithm

input :η ∈ R+,W ∈ Z+, r̃ ∈ RLT ,d ∈ N
output :Kd ∈ ZLT

1 Initialize ∀i ∈ [LT ] : Kd,i = 0,k = 1;

2 for k = 1, . . . ,W do
3 Execute steps 3 − 13 in Algorithm 1 once just to

produce ṽ as a simulation of vd ;
4 for all i ∈ [LT ] do
5 if k <W and ṽi = 1 and Kd,i = 0 then
6 Kd,i = k

7 else if k =W and Kd,i = 0 then
8 Kd,i =W

9 end
10 if Kd,i > 0 for all i ∈ [LT ] then
11 break

12 end

4.2 Expert II: Patrol planning via machine
learning model

In green security games, the wildlife crime datasets are used for

development of explicit attackers’ model based on machine learning

techniques. Since the ML modeling based on the real-world data

is not the focus of this paper, we skip the modeling details and we

just briefly provide an overview of the inputs/outputs for such ML

models and then we show how the outputs of such ML models are

used for patrol planning purposes [10, 11].

MLModel Inputs Inwildlife protection domain, the park rangers

begin to conduct patrols from patrol posts located across the vast

national parks and return to the same patrol posts every day as

shown in Figure 2(a). So the wildlife crime datasets consist of sev-

eral years of type, location, and date of the wildlife crime records

detected by park rangers during the repeated patrols which is used

for supervised ML modeling of attackers’ behavior. Along with

these historical observations, several environmental features such

as terrain (e.g., slope), distance values (e.g., distance to the border,

patrol posts, roads, and towns, rivers), and animal density along



with past patrol coverage are considered as predictor features that

influence the decision making process by adversaries. Such histor-

ical records are transformed into spatio-temporal data points to

train a machine learning model as follows. The protected area is

divided into grid cells
˜l (e.g., cells of size 1 sq. km) and the entire

time span of the crime records, T̃ , is divided into small time steps t̃
(e.g., 3 month or 12 month long due to sparsity of the data). Thus

the dataset D = (X, y), contains T̃ L̃ of such spatio-temporal slices

(usually tens of thousands) from all around the park over several

years where X ∈ RT̃ L̃×f is a matrix of f predictor features and

y ∈ {0, 1}T̃ L̃ denotes the observation vector which represents the

presence or absence of the attack.

ML Model Outputs Training a machine learning model based

onD = (X, y) gives predictions about probability scores (i.e., attack
risk) p(i) = h(xi ) at each target i . Such predictions are used to

generate optimized patrol strategies as shown by the following

mathematical model Q(a,b), where a and b are starting and ending

targets for patrolling.

vd = argmax

v ∈V

LT∑
i=1

vd,i .pi

subject to

vd,i =
∑
e ∈σ +(vd,i ) f (e) ∀e ∈ E,∀i ∈ [LT ]∑

e ∈σ +(vd,i ) f (e) =
∑
e ∈σ −(vd,i ) f (e) ∀e ∈ E,∀i ∈ [LT ]∑

e ∈σ −(v1,a ) f (e) =
∑
e ∈σ +(vD,b )

f (e) = 1 ∀e ∈ E
f (e),vd,i ∈ {0, 1} ∀i ∈ [LT ],∀e ∈ E

(3)

Due to the sparsity of the datasets, t̃ , the smallest time resolution

for ML model predictions is much larger than the smallest time

horizon T required for fine-tuned patrol planning, i.e., t̃ ≫ T . Con-
sequently, machine learning predictions for each location does not

get updated real-time and remain nearly similar across time period

T (i.e., stationary predictions) shown in time-unrolled graph in

Figure 2(b).

4.3 Patrol planning via expert I and II
Algorithm 3 outlines our meta-learning approach to balance be-

tween two experts, i.e., (I) MINION-sm online learning algorithm

with no prior knowledge and (II) an ML-based patrol planning

model with potentially imperfect prior knowledge. This algorithm

initializes the estimation of the reward as 0 (line 1) and then picks

a set of exploration strategies to obtain an initial assessment about

the performance of the experts; thus rml and rol are initialized for

both patrol planning experts (line 2). At each round d of the game,

the current collected rewards for each expert are perturbed (line

4) by drawing random noise for each expert from the exponential

distribution with parameter β to model the noise on the current

estimation of the rewards and then the best expert is chosen by the

algorithm (line 5). If ML model is selected as the best expert, vd is

computed based on the mathematical program Q(a = st ,b = ds)
presented by equations 3 (lines 6-8). Otherwise, the MINION-sm

online learning approach is used (lines 10-22). Then the adversary

picks the rewards rd for the defender (line 24) and the collected

rewards for each expert will be updated accordingly (lines 25-28).

The MINION algorithm continues for D rounds.

Algorithm 3: The MINION Algorithm

parameters :η ∈ R+, β ∈ R+,W ∈ Z+,γ ∈ [0, 1], e ∈ N,
st ∈ [LT ] , ds ∈ [LT ];

1 Initialize the estimated reward r̃d = 0 ∈ RLT , rml = 0, rol = 0,

nml = 0, nol = 0;

2 Pick e exploration strategies such that two experts ml

(outlined in line 7) and ol (outlined in lines 10-16) are explored

uniformly and rml and rol are initialized ;

3 for d = 1, . . . ,D do
4 Draw cd,1 ∼ exp(β) and cd,2 ∼ exp(β)

5 if rml
nml
+ cd,1 ≥

rol
nol
+ cd,2 then

6 nml ← nml + 1;

7 f = 0;

8 Let vd be computed from the mathematical program

Q(a = st ,b = ds) in 3;

9 else
10 nol ← nol + 1;

11 f = 1;

12 Let vd be computed by following steps 3-13 in

algorithm 1;

13 end
14 Adversary picks rd,i ∈ [0, 1]

LT
and defender plays vd ;

15 rml ← rml + f vdrd ;

16 rol ← rol + f vdrd ;

17 Run GR(η,w, r̃ ,d): estimate
1

pd,i
as Kd,i ;

18 Update r̃d,i ← r̃d,i + Kd,ird,i Id,i ; where Id,i = 1 for

vd,i = 1; Id,i = 0 otherwise;

19 end

The intuition behind MINION is that the algorithm will learn

whether it is useful to rely on historical data. If yes, then it will

use the ML model to predict the future payoffs, otherwise it will

use MINION-sm to plan the patrolling strategy. In particular, we

provide the following guarantee on the performance of MINION:

Theorem 4.2. Let PML and Pfixed denote the expected performance
of the ML model and the best fixed patrolling strategy in hindsight.
The expected performance of MINION is at least as good as

max{PML, Pfixed} − O
(√

TMDmin{M,T } logLT
)
.

proof sketch. If PML > P
fixed

then the meta-learner in MIN-

ION will learn this with O(
√
D) regret (as the meta-learner a two-

expert learning problem). Otherwise, it will converge to MINION-

sm. This yields regret of O(
√
D) +

O

(√
TMDmin{M,T } logLT

)
=O

(√
TMDmin{M,T } logLT

)
. □

5 NUMERICAL EVALUATION
In this section, we evaluate the numerical performance of the

MINION-sm and MINION against an ML-based patrol planning

model (ML-exploit) and absolute exploratory defender strategies

(pure-explore). We first evaluate our algorithms on a game with 25

locations (L = 25) and a patrol horizon of 6 time steps (T = 6) and

then we show the average defender reward for all techniques by
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Figure 3: Regret for adversaries with stochastic (stationary) and Quantal response (non-stationary) behavior - L = 25, T = 6

varying the patrol horizon (i.e., different time-unrolled graph sizes).

The MINION-sm and pure-explore algorithm do not incorporate

any explicit model for attackers’ behavior. However, the MINION

algorithm and also ML-exploit baseline algorithm require access

to an ML model for attackers’ behavior to solve the mathematical

model 3 for patrol planning. We simulate the ML model predictions

(ML outputs), p(i) = h(xi ), with three different scenarios shown in

Figures 4(a) to 4(c). These predictions are stationary for all loca-

tions across the patrol horizon. We assume two types of adversarial

(a) MAE=0.4 (b) MAE=0.2 (c) MAE=0.1 (d) GT,m=22 (e) GT,m=11 (f) GT,m=1

Figure 4: left three heat maps for attack probability pre-
dicted by different ML models, right three heat maps for at-
tack probability ground truth, red dot is patrol post location

behavior: (i) STC- a Stochastic adversarial behavior where the likeli-

hood of attack at each location can be defined by probability scores;

Figures 4(d) to 4(f) shows our simulated cases for three different

m values, wherem indicates the expected number of the attackers.

These probability scores represent the ground truth for adversarial

behavior and are stationary acrossT = 6 time steps for all locations.

We used them to pick rewards for the defender play in the game for

all of the patrol planning methods. (ii) QR- a Quantal Response ad-

versary where the attackers’ behavior is non-stationary across the

game rounds and the attackers respond to the empirical defender

mixed strategy by a QR model [27].

For each STC adversary represented by the ground truth (GT)

probabilities shown in Figure 4(d) to 4(f), the ML simulations have

different levels of inaccuracy.We quantify this difference viaMAE =∑L
l=1 |pдt (l) − pml (l)|/L which is the mean absolute error in pre-

dictions. In our simulated cases shown in Figure 4, MAE varies

from 0.1 to 0.4. For QR adversaries, we do not have a fixed GT and

adversaries’ responses are updated according to the updated mixed

strategy of the defender. We examine two λ values, i.e., 0.1 and 0.3

as the rationality parameters of the adversaries where the smaller

values indicate more non-rational adversaries in QR model.

The regret values for all 9 scenarios for STC and 6 scenarios for

QR are shown in Figures 3. The blue dashed lines and the green

lines in the figures show the results for pure-explore and for ML-

exploit baseline methods, respectively. The red dotted lines and

black solid lines illustrate the results for MINION-sm and MINION

algorithms proposed in this study. The regret values are shown
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Figure 5: Average defender utility over 200 rounds for adversaries with stochastic (stationary) and Quantal response (non-
stationary) behavior for different graph sizes and different number of attackers m

along the y-axis and the game rounds are shown along the x-axis.

In the left three columns, for the STC adversary, we show the per-

formance loss when the accuracy of the MLmodel predictions (used

in ML-exploit and MINION) increases from left to the right. From

top to the bottom, we show the change in performance loss as the

expected number of the adversary increases. In the first and the

second column in Figure 3 where ML model is relatively inaccu-

rate, MINION-sm (the technique that uses no prior knowledge and

balances exploration and exploitation), outperforms ML-exploit

whereas in the third column the trend is reversed since the ML

model is sufficiently accurate and informative for the patrol plan-

ning task. On the other hand, MINION outperforms all other meth-

ods in all cases since it obtains a balance between MINION-sm and

ML-exploit and finds the best expert based on their empirical perfor-

mance. In the right two columns, for QR adversaries, MINION-sm

algorithm outperforms other techniques. When the relative number

of the adversaries to the number of the defender resources is larger,

this difference is more significant. The MINION is outperformed

by MINION-sm against QR adversary, since it partially relies on an

ML-based patrol planning expert for which the predictions are not

updated accordingly over the game rounds and thus suffers from

biases in prior knowledge.

Figure 5 shows the average defender utility over 200 rounds

of the game on the y-axis vs. different patrol horizons. The game

settings with different number of attackers are outlined across the

different rows. For STC adversary (shown in the left three columns),

MINION outperforms all other methods and for QR adversaries

(shown in the right two columns), the MINION-sm algorithm out-

performs other methods for all graph sizes. The key reason behind

the poor performance of MINION vs. MINION-sm in QR scenario

is that MINION incorporates an ML-based planner with station-

ary predictions about the attackers’ behavior as an expert planner

against the non-stationary (responsive and strategic) adversaries

which is detrimental to the defender.

6 CONCLUSION
This paper focuses on the important problem of game-theoretic

patrol route selection for preventing poaching activities in wildlife

parks. The main intellectual contribution of the paper is that it

shows that over-reliance on historical patrolling data (or "prior

knowledge") in the patrol route generation process may lead to

highly sub-optimal patrols, and that the optimal amount of reliance

on prior knowledge can be learned effectively (by techniques put

forth in the paper). Specifically, this paper makes the following

methodological contributions: (I) we propose MINION-sm, a scal-

able online learning algorithm that learns an implicit model of the

attacker when defender is spatio-temporally constrained, (II) we

propose MINION, which is a scalable multi-expert patrol planning

algorithm with spatio-temporal constraints for the defender that

obtains a balance between the ML-based planners and MINION-sm

based on their empirical performance. We showed that our algo-

rithms outperformed other techniques in different game settings.
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