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ABSTRACT
Substance use and abuse is a significant public health problem in the

United States. Group-based intervention programs offer a promising

means of preventing and reducing substance abuse. While effective,

unfortunately, inappropriate intervention groups can result in an

increase in deviant behaviors among participants, a process known

as deviancy training. This paper investigates the problem of optimiz-

ing the social influence related to the deviant behavior via careful

construction of the intervention groups. We propose a Mixed In-

teger Optimization formulation that decides on the intervention

groups to be formed, captures the impact of the intervention groups

on the structure of the social network, and models the impact of

these changes on behavior propagation. In addition, we propose

a scalable hybrid meta-heuristic algorithm that combines Mixed

Integer Programming and Large Neighborhood Search to find near-

optimal network partitions. Our algorithm is packaged in the form

of GUIDE, an AI-based decision aid that recommends interven-

tion groups. Being the first quantitative decision aid of this kind,

GUIDE is able to assist practitioners, in particular social workers, in

three key areas: (a) GUIDE proposes near-optimal solutions that are

shown, via extensive simulations, to significantly improve over the

traditional qualitative practices for forming intervention groups;

(b) GUIDE is able to identify circumstances when an intervention

will lead to deviancy training, thus saving time, money, and effort;

(c) GUIDE can evaluate current strategies of group formation and

discard strategies that will lead to deviancy training. In developing

GUIDE, we are primarily interested in substance use interventions

among homeless youth as a high risk and vulnerable population.

GUIDE is developed in collaboration with Urban Peak, a homeless-

youth serving organization in Denver, CO, and is under preparation

for deployment.
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1 INTRODUCTION
Peers have a direct influence in adolescentsâĂŹ risk behaviours

Substance use and abuse is a significant public health problem
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Figure 1: Urban Peak site. We are collaborating with Urban
Peak organization for conducting the group-based interven-
tions

in the United States, particularly among youth. According to the

Monitoring the Future study [12], around 54 percent of high school

students have tried at least one illicit substance. Homeless youth,

in particular, are shown to be disproportionately affected, with

substantially higher levels of substance use compared to the housed

youth [14].

Notably, interventions attempting to reduce substance use have

successfully utilized social networks to disseminate and reinforce

behavioral norms supportive of protective behaviors related to

substance use (e.g., [19]). The way the social network is utilized

is often through formation of subgroups where the individuals

can talk, share experiences and engage in various constructive

activities. Such social network-based approaches to substance abuse

prevention are considered more promising because young people

learn better from one another, find each other more credible and

have a shared environment and culture [6].

Unfortunately, these social network-based efforts may inadver-

tently increase the chances of youth being exposed to negative

social influences, as they do not explicitly structure the interven-

tion groups. This can result in an effect known as deviancy training.

Deviancy training occurs when high-risk youth are aggregated

together and reinforce negative behaviors and attitudes.

Social network-based interventions have typically grouped par-

ticipants into intervention groups in three ways [19]: (1) random
assignment: participants are randomly assigned to the groups; (2)

network based assignment: participants are assigned based on their

own nominations; (3) teacher nominated assignment: groups are
created based on teacher nominations, often corresponding to an

assignment based on the participants’ behaviors, i.e., even distribu-

tion of high-risk individuals. The random assignment and teacher

nominated methods are less effective because they are not designed

to leverage naturally occurring ties in participants’ social networks.

The network-based method on the other hand does leverage these

https://doi.org/doi
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natural forms of influence. However, it is shown that it can have

unintended effect of exacerbating the problem behavior [19].

Recently, successful applications of AI based decision aids such

as [21] and [5] have encouraged efforts to address such complicated

social problems using techniques in AI and optimization [15]. In the

present work, we aim to tackle the problem of deviancy training in

substance abuse intervention by structuring more effective groups,

one that effectively partitions the participants’ social network.

Building this decision aid, however, raises major challenges.

First, it has been observed that in the process of being a part of

the network-based intervention, the sub-networks (peer-groups) un-

dergo a transformation, whereby network ties change in strength [17].

Such changes will consequently change the influence spread pat-

terns and therefore constitute an important component of themodel.

Second challenge is understanding the influence process. In this

regard, we propose an influence spread model which is based on the

competitive Linear Threshold (LT) Model in [3] to explain both pos-

itive and negative social influences within interventions. The third

major challenge is to strategically choose the right peer-groups

from the larger social network to mitigate the challenge of deviancy

training. In the following, we will refer to those engaged in sub-

stance use as “users”, that we wish to have socially influenced by

“non-users” peers in the smaller groups, so as to reduce/prevent

such substance use and abuse.

We view this problem as an influence maximization problem,

with the goal of maximizing/minimizing the total positive/negative

influence by careful construction of the intervention groups, consid-

ering the consequent changes in the network topology. Influence

maximization in networks has been widely studied in the past

decade and several works have tried to address the problem of mod-

ifying the network topology in order to maximize positive influence

spread or curtail undesirable behaviors. In particular, [9, 10] study

the problem of edge deletion/addition under the LT model. Our

problem however is different: we do not directly decide on edges to

add/delete. Instead, we can only select how participants are parti-

tioned into intervention groups. Depending on this choice, there is a

disciplined process that controls how social network changes. More

precisely, we will cluster the given social network into interven-

tion groups, which causes further changes in the network topology

as a byproduct, and subsequently controls how the positive and

negative influences propagate.

Social influence optimization and network dynamics distinguish

this work from the existing literature on network clustering. For ex-

ample, [2] studies clustering graphs with both positive and negative

edges, but the structure of the network is static. Further, unlike [7]

that considers the network dynamic, we are interested in optimizing

a stochastic influence function, plus, the evolution of the network

topology is not just a function of time but a function of the deci-

sions variables or clusters. To best of our knowledge no work has

addressed such influence-based clustering of networks to this date.

To address these challenges, we propose an AI-based decision aid,

called GUIDE (GroUp-based Intervention DEcision aid). GUIDE

assists interventionists in substance abuse prevention by giving rec-

ommendations regarding the intervention groups. In what follows

we detail our main contributions: (I) First, we introduce a novel

problem to AI researchers; We propose a mathematical model for

this type of intervention, which includes the key aspects of the

influence spread and network dynamics. The model enables us to

predict, both the expected success of the intervention, measured

as the expected number of “non-users” at the end of the interven-

tion, and the possibility of harm, or deviancy training. (II) We show

that the problem of finding the optimal partition to minimize the

expected substance use is NP-hard. (III) Therefore, we propose

both a Mixed Integer Linear Program (MILP) to solve this prob-

lem and a hybrid meta-heuristic algorithm that combines MIP and

Large Neighborhood Search (LNS) to find near-optimal network

partitions. (IV) We provide extensive analysis of the model, using

both real-world social network data and synthetic graphs and we

show that our proposed partitions can significantly outperform all

common practices such as random assignment of individuals or

participants choice.

2 PROBLEM STATEMENT
Our goal is to create an assistant that will aid an interventionist for

substance abuse prevention. The intervention that we consider is

a 6-week program, in which participants are placed into different

groups. The size of each group is bounded between 4 and 7. An

interventionist interacts with each group. Pre-intervention, the par-

ticipants are asked to report both their hard-drug using behaviors,

and their network relationships (i.e., who they know) and what

the strength of that relationship is (whether a person is a strong

or a weak tie). Over the course of the intervention and based on

the groups assignments, these social ties will change: some may

become weaker, while others may grow stronger. We aim to maxi-

mize the number of “non-users” one-month after the intervention

is complete.

We view the problem of group configuration for substance abuse

prevention as a graph partitioning problem. Given a social network,

the goal is to find a partition such that the expected number of

“non-users,” at the end of the intervention, is maximized. More

formally, let graph G = (V,E) be a directed graph representing the

given social network, with V as the set of all nodes (individuals in

the social network), and E ⊂ V × V as the set of all edges (social

ties). Arc (i, j) ∈ E indicates existence of an arc pointing from i
to j, signifying that j has reported i as a friend pre-intervention.

Associated with each node i ∈ V is a node behavior indicating that

node i is a substance “user” or a “non-user.” The scalar bi ∈ {0, 1}

encodes the node behavior with bi = 1 if and only if node i is a
“user.” Additionally, associated with each edge e = (i, j) ∈ E is the

edge strength se ∈ {0, 1}, where se = 1 (resp. 0), indicates that j
considers i as strongly (resp. weakly) influential for him.

We model the intervention as a partition of V into S subsets Ps ,

s = 1, . . . , S , such that ∩Ss=1Ps = ∅, ∪Ss=1Ps = V, where each subset
must consist of at leastC and at mostC nodes. Note that the number

of subsets S is a decision variable, butC andC are pre-specified. Dur-

ing the intervention and based on the group configurations, the ties

undergo changes. Some ties are cut or weakened and somewill be re-

inforced. We assume that, given a choice of partition P := {Ps }
S
s=1,

the post-intervention structure of the network is known determin-

istically. We let G+(P) = (V,E+(P)) denote the post-intervention
graph when groups are formed according to partitionP, with E+(P)
corresponding to the new edge set. Thus, (i, j) ∈ E+(P) if and
only if j considers i as a friend post-intervention. Accordingly, for
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Same Group no-tie weak strong

(user, user) strong strong strong

(non-user, non-user) strong strong strong

(non-user, user) weak weak strong

(user, non-user) weak weak strong

Separate Groups no-tie weak strong

(user, user) none none strong

(non-user, non-user) none weak strong

(non-user, user) none none weak

(user, non-user) none none weak

Table 1: Changes in tie strength post-intervention. The ex-
isting relationships, and the behavior of the individuals as
well as their assignment to groups impacts the changes.

e ∈ E+(P), we denote by s+e (P) ∈ {0, 1} the strength of edge e
post-intervention.

The behavior of node i ∈ V post-intervention is random. We

let Bi (P) denote the random variable that represents the behavior

of node i post-intervention, i.e., Bi (P) = 1 if and only if node i is
a “user.” This is a complicated stochastic function of the partition

that depends on both the link formation and breakage rules and

the influence model assumed. Figure 2 shows an example network

pre- and post-intervention.

Mathematical Formulation. Mathematically, the problem of se-

lecting the optimal partition P that maximizes the expected number

of “non-users” in the network post-intervention can be formulated

as:

maximize E

[∑
i ∈V

(1 − Bi (P))

]
subject to S ∈ N+

Ps ⊂ V ∀s ∈ {1, . . . , S}
S⋂
s=1

Ps = ∅

S⋃
s=1

Ps = V

C ≤ |Ps | ≤ C ∀s ∈ {1, . . . , S},

(1)

Where E[·] denotes the expectation operator with respect to the

distribution of {Bi }i ∈V. The objective counts the expected number

of “non-users” in G+(P). Note that we are considering the inter-

vention period as one time step and therefore, we are assuming a

single-stage influence process. The first three constraints ensure

that P forms a partition of the node set. The last constraint enforces

capacity constraints on each group.

Problem (1) is a combinatorial optimization problem which is

hard to solve as formalized by Theorem 2.2. In order to solve this

problem, both the random behavior B, as well as the network struc-

tural changes must be modeled. In the following two sections, we

propose models for network and influence dynamics that are sup-

ported by the social work literature.

Tie Formation and Breakage. While these youth have pre-

Figure 2: An example network pre- (left) and post- (right)
intervention. The black (resp. white) circles indicate “user”
(resp. “non-user”) nodes. Weak (resp. strong) links are de-
noted by thin (resp. thick) arrows. The ellipsoids represent
the two groups that are formed for the intervention. As seen,
new edges are created within the groups, while some edges
are cut across the groups. partitions

existing strong or weak ties, especially centered around their sub-

stance use, the strength of these relationships would weaken or

strengthen during the intervention [4]. There is empirical evidence

to suggest that the more similar two individuals are, the stronger

their ties are [1]. This is explained by their behavioral homophily.

Homophily refers to the tendency of people to associate with peo-

ple who are like themselves and these ties also often facilitate more

communication and influence [13]. Therefore, if two individuals

are both “users” or both “non-users,” we assume that they would

develop a strong tie over time. Based on this rationale, we also

model the interventionist who will exert a positive influence as

an additional “non-user” who develops a weak tie to the “users”

and a strong tie to the “non-users,” during the intervention period.

An important component of the proposed intervention is to de-

velop skills that would facilitate bonding with pro-social peers and

discourage interactions with youth who have high-risk behaviors

[18]. Therefore, if two individuals are separated and at least one

of them has “user” behavior, their tie weakens or is cut. Table 1

summarizes how we expect strength of ties to change in response

to graph partitioning. In this table, the rows indicate the behavior

of the pair of nodes under consideration, and the columns show

their pre-intervention tie. The changes are defined as a function

of the ties pre-intervention (E), the behavior of the end nodes (bi ),
and whether they are assigned to the same group or not.

Example 2.1. Consider the example network in Figure 2. In this

network, black circles indicate "user" individuals and white circles

represent "non-user" people. Initially, individuals are connected

with either weak or strong ties, where weak ties are shown via light

arrows, and strong ties are depicted via bold arrows.

Given this social network as input, we need to group the indi-

viduals into two intervention groups. Based on this decision, new

connections will form. Consider the grouping as depicted in Fig-

ure 2. Post-intervention, the ties undergo changes according to

table 1. Therefore, new ties will be formed between individuals that

did not have any ties before intervention and are placed in the same

group. Also, some of the weak existing ties become stronger before

the intervention. Also, some of the weak ties will become stronger
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as a result of the grouping. Finally, the existing ties that are across

groups will be broken or weakened.

Substance Abuse Prevention Influence Spread Model. Fol-
lowing the intervention, and depending on how the network evolves,

we evaluate the influence to predict the changes in the nodes’ be-

haviors. We use a variant of the popular Linear Threshold model

[8] proposed in [3], in which they study the competitive influence

processes in social networks. Our problem is similar to [3] as there

are two concurrent influences, a positive influence which originates

from the “non-users” and a negative influence from “users.” How-

ever, it differs from their model in that the nodes in our network

have already adopted one of these two behaviors.

Consider the post-intervention graph asG+(P) = (V,E+(P)). For
notational convenience, we henceforth eliminate the dependence of

G+ and E+ on P. For each (i, j) ∈ V × V, a weight valuewi j ∈ R is

assigned, which characterizes the amount of influence from node i
to node j. These weights are such that the sum of the weights of

the incoming edges to a certain node is bounded. Specifically,

0 ≤
∑
i ∈V

wi j ≤ 1, ∀j ∈ V,

Initially, each node i ∈ V is assigned a threshold value, denoted by

T i
, corresponding to the influence threshold for switching behavior

(from “user” to “non-user” and vice-versa). We assume these thresh-

olds are uniformly distributed in the range [0, 1]. A necessary con-

dition for a node to change his behavior is for the sum of his neigh-

bors’ weights with opposite behavior to exceed the node’s threshold.

Mathematically, if for example, bj = 1 and

∑
i :bi=0

w(i, j) ≥ T j
, node j

has the necessary condition to become a “non-user.” Following the

model from [3], if the threshold of a “user” (resp. “non-user”) is

exceeded, the node behavior will switch with probability Ω
u |n (resp.

Ω
n |u). Thus, for any node i , we can express their post-intervention

behavior distribution as:

P(Bj = 1) = Ω
u |nP

©­«
∑
i :bi=0

wi j ≥ T jª®¬ , if (bj = 0)

P(Bj = 0) = Ω
n |uP

©­«
∑
i :bi=1

wi j ≥ T jª®¬ , if (bj = 1).

Theorem 2.2. Problem (1) is NP-Hard, even under the presented
influence model.

Proof. We construct a reduction from Set Cover problem with

N items to be covered byM subsets. The reduction can be explained

as follows:

For any item in the set cover problem, a "non-user" node, and for

any set, a "user" node will be created. There is a tie from a "user" to

a "non-user", if and only if the item is included in a set. In the drug

prevention problem, we aim to partition the network into S sub-

graphs. However, several assumptions are made. First, all ties across

partitions are cut. Every pair of "user" in the same group form a

tie. Every member of the network is connected to a "non-user" (the

interventionist). All the ties have the same weight. The threshold

values for "non-users" are set to

Number of "user" connections

Number of "user" connections + 1

.

"User" thresholds are set equal to

1

2

+ ϵ (ϵ > 0 , small positive

number.) The capacity of each group is N +M. If the optimal solution

is at least (N + S + 1), there is at most one group with more than

two "users". This is because, if there are at least N +S +1 "non-user"
at the end of the intervention, at least S "users" must have flipped

to "non-user", and the way the thresholds are set requires that the

"users" are not put together in a group, in more that one group.

Also, it is best to separate the "users" from "non-user". Therefore,

the optimal S "user" to isolate will be equivalent to the solution of

the Set Cover. Also, a solution to the Set Cover results in at least

N + S + 1 "non-user". □

3 MIXED-INTEGER PROGRAMMING
FORMULATION

We present a MILP formulation of Problem (1). First, we define

ssi j , s
w

i j , s
∅
i j as indicators for whether the pre-intervention tie from

i to j is strong, weak, or there is no tie, respectively. The values

for these variables are known from the initial data on the network

structure and are determined as s ∅i j := I((i, j) < E), ssi j := I((i, j) ∈

E and s(i, j) = 1), and swi j := I((i, j) ∈ E and s(i, j) = 0), for each

(i, j) ∈ V × V, where I(·) is the indicator function.
Let us first introduce the decision variables. We define zi j as a

binary variable which is equal to 1 if nodes i and j are in the same

group. Also, let xs+i j ,x
w+
i j ,x

∅+
i j be binary variables to encode the

post-intervention tie strength. Finally,wi j is the normalized post-

intervention weight of the tie between i and j. Next, we introduce
the constraints in this problem.

The groups must satisfy the capacity constraints, that is the sum

of all the nodes that are in the same group must meet the following

constraint,i.e.,

C ≤
∑
i ∈V

zi j ≤ C ∀j ∈ V.

we require that if i and j are in the same group, and so are j and

k, i and k must be in the same group as well. This can be expressed

by saying that:

zi j + zjk − 1 ≤ zki ∀i, j,k ∈ V.

The post-intervention link strengths can be defined dependent

on the pre-intervention edge strengths, the group assignments, and

the behavior of the nodes. Therefore, according to Table 1, the link

from i to j will become strong if for example, nodes i and j belong to
the same group and either have similar behaviors, or they already

have a strong tie, which is encoded as part of the following equation

xs+i j = zi j
[
ssi j + |bi + bj − 1|(s ∅i j + s

w

i j )
]

+(1 − zi j )|bi + bj − 1|ssi j ,

where the term |bi + bj − 1| is 1 iff i and j have the same behavior.

Similarly,

xw+i j = zi j
[
|bi − bj |(s

∅
i j + s

w

i j )
]
+ (1 − zi j )[

swi j (1 −max(bi ,bj )) + (s
s
i j )(|bi − bj |)

]
.

determines whether the new tie from i to j is weak. Once the post-
interventions network is determined, the normalized weights are
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calculated according to equation:

wi j =
Wsx

s+
i j +Wwx

w+
i j∑

i′∈VWsx
s+
i′j +Wwx

w+
i′j
,

whereWs andWw , (Ww < Ws ) are numerical values for strong

and weak ties, respectively. In this equation, the numerator is the

strength of the tie from i to j, before normalization which is equal

toWs if it is a strong tie, orWw if it is a weak tie. The denominator

is the sum of all the incoming weights. While the above constraint

consists of nonlinear terms, they can be linearized using standard

techniques which require introducing a new decision variable for

each product term.

Finally, the objective can be defined as follows:∑
j :bj=0

(
1 − (Ω

u |n

∑
i :bi=1

wi j )
)
+

∑
j :bj=1

(Ω
n |u

∑
i :bi=0

wi j ).

This equation gives the closed form objective to our problem, which

is the expected number of “non-users” post-intervention. The first

term in the above equation is the expected number of “non-users”

that remain “non-users.” The second term is the expected number of

“users” that change. This equation is equivalent to the objective in

Problem (1). Note that since in the influence model, the thresholds

are drawn from a uniform distribution, the probability that a node

changes its behavior equals the normalized incoming edge weights

from neighbors with that behavior.

4 LARGE NEIGHBORHOOD SEARCH (LNS)
Local search algorithms target a set of feasible candidate solutions

(neighborhood) and iteratively improve a solution by searching

within that limited space. Small neighborhoods are faster to ex-

plore, but can make escaping a local optimum much harder. Large

neighborhood search which was first proposed by [16], can alleviate

this problem by exploring a carefully chosen large neighborhood.

LNS iteratively improves a solution by alternatively destroying and

repairing a solution.

Our solution approach is based on a mixture of LNS and MILP

optimization which has been proven successful in [11]. Starting

from an initial feasible solution, each loop starts by destroying the

current solution by selecting two groups at random. It then repairs

the solution by optimally deciding how to partition people between

these two groups. Since this MILP subproblem is much smaller than

the original MILP, it yields a significant improvement in the run

time. It is important to note that in the destroy step, determining

the amount of destruction is crucial. If too little is destroyed, the

effect of large neighborhood is lost, whereas large destructions will

result in a repeated re-optimization.We experimentedwith different

neighborhoods, for example destroying the group assignment of

random nodes or three groups at the same time (instead of two).

In these cases, the results were not performing as well as the two-

group neighborhood.

5 EXPERIMENTAL SETUP
Network Data. Social Network data primarily comes from the

Youthnet study in which homeless youth were recruited from a

drop-in center in Los Angeles County, CA. Clearly, our approach

is independent of the input network data. Therefore, we use this
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Figure 3: Comparison between small and large neighbor-
hood search

dataset for our preliminary study. We also plan to deploy our ap-

proach in Denver and in collaboration with Urban Peak organiza-

tion.

In order to explore different network structures, we use randomly

generated Watts Strogatz (WS) graphs [20] with parameters (p =
0.25,k = 4).WS graphmodels have properties such as short average

path lengths which makes them close to real-world networks.

Baselines. For evaluation, we compare MILP and LNS against

three different baselines. These baselines are based on the three

approaches that were detailed in the Introduction section (random

assignment, network-based or by participants choice, and teacher

nominated assignments).

Model Parameters. In the following experiments, and based on

input from domain experts we choose the model parameters as:

Ω
u |n = 1.0, Ω

n |u = 0.8, C = 3, C = 8,Ws = 3, andWw = 1. We

also explore the impact of variations of some of these parameters.

For the LNS, 50 trials are performed, each starting from a different

random initial solution and we report the solution with highest

expected success rate. We also report averages over 25 different

graph samples, both for the real and WS graphs.

6 RESULTS AND DISCUSSION
Solution Quality Metrics. Different solution strategies are com-

pared based on a success metric, which we define as:

success =
E(
∑
i ∈V (1 − Bi (P))) −

∑
i ∈V (1 − bi )

max

(
E(
∑
i ∈V (1 − Bi (P))) −

∑
i ∈V (1 − bi )

)
The numerator is the expected number of youth that have become

“non-users” as the result of the intervention. The termE(
∑
i ∈V

(1 − Bi (P)))

corresponds to the objective function of Problem (1). The denom-

inator is its maximum possible value which is bounded above by

Ω
n |u

∑
i ∈V

bi – it corresponds to the case where all “users” thresholds

are exceeded, and thus the maximum expected number of “users”

that will change.

Neighborhood Search: Small vs. Large. We first compare the

success rate of the two local search based algorithms. In each step

of the small neighborhood search, a randomly chosen pair of nodes

switch groups. If the resulting solution has a higher success rate,

the solution is accepted and this process continues until a locally

optimal solution is found. As explained previously, the LNS im-
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Figure 4: Solution quality of MIP and LNS in GUIDE, against
three baselines commonly employed by practitioners (Syn-
thetic Graphs)
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Figure 5: Solution quality of MIP and LNS in GUIDE, against
three baselines commonly employed by practitioners (Real
Graphs)

plementation is based on re-optimization of the randomly chosen

groups. For both algorithms, each run is repeated for different initial

random solutions until a time limit is reached. In this experiment,

we use 10 different randomly generated WS graphs of size 30. The

time limit is set to 1 hour. Figure 3 shows that the small neighbor-

hood search can perform poorly relative to LNS under a variety of

instances. This results indicates that between MILP, which is not

easily scalable to larger networks, and pure small neighborhood

local search which is favorable due its lower computational demand,

LNS can achieve a balance between quality and speed and it is able

to outperform local search, given the same time budget.

Solution Quality. Figures 4 and 5 compare the success rate of
the optimization techniques, MIP and LNS against our baselines

across 4 different network sizes, for both real network samples and

WS samples. The MIP solver is given a cutoff time equal to the

solution time of LNS (summed over the 50 trials). These results

indicate that the solutions of both MIP and LNS are significantly

better than any of the traditional methods for forming these groups,

both statistically (p < 0.01) and practically. From the practical point

of view, prevention science cares about effect size of interventions

in addition to the statistical significance, and we observed in the

results that we were able to provide solutions that outperform the

traditional methods up to (20 - 41)%. Figure 5 also shows that in

the real network samples (sizes 20 and 30), the baselines have a neg-

ative success rate. Negative success rate corresponds to the deviancy
training effect, which means the expected number of “non-users”
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Figure 7: LNS solution time analysis. This plot indicates how
the solution evolves with respect to the number of runs.

post-intervention is fewer than pre-intervention. This observation

can be explained by the structure of the network as well as the

behavior of the nodes. In fact, in these samples, a significant ratio of

the individuals are “users” (68%), hence the negative influence dom-

inates. Additionally, many of these “users” are strongly connected

with their “user” peers, making it hard for them to be positively

influenced. We should note that the optimized strategies are always

strictly positive, though the success rate is limited due to the cer-

tain network structure. It can also be observed that the common

intuition of evenly distributing the “users” across groups is in fact

performing relatively well as compared to the other baselines. The

importance of this result is twofold; First, it validates our model

by reflecting the intuition of the social work partners that such a

strategy is helpful. Secondly, we can clearly see that there is room

for further improvements over these baselines.

There are computational lessons learned as well. For example,

MIP is guaranteed to find the optimal solution by searching the

entire solution space, but as shown here, it is not a practical solu-

tion due to time constraints. In fact, LNS outperforms MIP solution

given the same time budget. Figure 6 compares the intervention

success with respect to different

Ω
u |n

Ω
n |u

ratios. This experiment is

performed on synthetic graphs of size 40. It illustrates that the

increase of this ratio will result in a decline in expected success of
our intervention.

Scalability.
Figure 7 shows the LNS solution quality in a 40-node real-world

graphs against the number of runs. Recall that LNS is run for 50
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Figure 8: LNS solution time analysis. This plot shows how
the time required to find a locally optimal solution changes
with respect to the network size.

times, each starting from a different random initial solution. Figure

7 (a) shows that almost after 20 runs, the solution does not change

significantly. Figure 8 shows the time needed for the LNS to find a

locally optimal solution for different network sizes. This plot shows

that as the size of the network increases, the LNS time increases

polynomially. These results suggest that LNS is an efficient choice

for our purpose, mainly because a decision aid, such as GUIDE,

needs to be adjustable to unanticipated occurrences. For example in

cases a person does not show up, or refuses to accept his assignment,

GUIDE needs to recalculate a new solution relatively quickly based

on the imposed constraints. Therefore we will utilize LNS as the

core optimization algorithm in GUIDE.

7 DEPLOYMENT
GUIDE is developed in collaboration with Urban Peak, a homeless-

youth serving organization in Denver, CO, and it is under prepara-

tion for deployment. We have developed an application that encap-

sulates the data collection phase as well as the implementation of

the LNS, the optimization algorithm. This application has a user-

friendly interface that facilitates the use of our algorithm for the

practitioners.

In the first phase, detailed data about the social network and

substance use behavior of each volunteer is collected. Then, a per-

sonalized ID is assigned to each individual and the data is stored on

the local machine for future use. See Figure 9 (a). Next, the data is

fed into the LNS algorithm to generate a suggestion for intervention

groups. The practitioners can easily upload or choose an existing

social network data file. After the optimization is performed, the

results will appear on the screen, See Figure 9 (b). The results in-

clude a group assignment for each individual which is formatted

as a table. Finally, the output can be printed and saved to a file for

future references.

8 CONCLUSION
Substance abuse is a very significant public health and social prob-

lem in the United States. We have identified a niche in this wicked

social problem where AI can make a contribution, illustrated the

many modeling complexities, and provided algorithmic improve-

ments over current practice. The result is GUIDE, an AI-based

(a) A snapshot of the (b) A snapshot of the GUI

data collection form for the group recommendation

Figure 9: Two snapshots of the GUIDE application. (a) First,
detailed information about the substance-use behavior of
each individual is collected and saved in a data base. (b) Sec-
ond, the practitioners will query the application for a group
recommendation.

decision aid which leverages social network to structure interven-

tion groups. We evaluated our approach against different traditional

methods ranging from those based on intuitions such as distributing

“users” to purely random strategies with no effort to understand the

social circle of these youth. We showed that these traditional strate-

gies significantly under-perform relative to our proposed method,

emphasizing the importance of social influence in composition

of these groups. In fact, here our focus is on the life choices of a

extremely vulnerable section of the population. The result, as we

discussed, is a model that is of tremendous value to prevention sci-

entists, providing them with a quantitative means of understanding

phenomena for which until now only qualitative observations were

feasible. In particular, as these interventions are very costly and

time consuming, the ability to forecast the likely impact of different

strategies is very helpful.
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