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ABSTRACT
As disasters such as earthquakes and floods become more frequent

and detrimental, it is increasingly important that water infrastruc-

ture resilience be strategically enhanced to support post-disaster

functionality and recovery. In this paper, we focus on the prob-

lem of strategically building seismic-resilient pipe networks to

ensure direct water supply to critical customers and certain prox-

imity to water sources for residential areas, which we formalize

as the Steiner Network Problem with Coverage Constraints. We

provide complexity statements of the problem and present an effi-

cient mixed-integer linear program encoding to solve the problem.

We also investigate the problem of planning partial network in-

stallments to maximize efficiency over time and propose a fast and

effective sequential planning algorithm to solve it. We evaluate our

algorithms on synthetic water networks and also apply them to a

case study on a water service zone in Los Angeles, which demon-

strate the effectiveness of our methods for large-scale real-world

applications.
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1 INTRODUCTION
Human-made and natural disasters such as earthquakes, floods, and

oil spills are global concerns that have already caused widespread

disruptions to infrastructures, individual lives, and environmental

systems. Given current trends in environmental change and human

population growth, such disasters are likely to increase in frequency,

severity, and distribution. Hence, it is vital to have informed, ef-

fective, and efficient disaster mitigation, planning, and response
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capabilities. Enhancing infrastructure resilience is particularly cru-

cial since it concerns energy and water supply, transportation, and

communication. Indeed, to “build resilient infrastructure, promote

sustainable industrialization and foster innovation” is one of the

United Nation’s Sustainable Development Goals [2].

Water infrastructure is especially critical as it provides access

to drinking water, functioning fire departments, and healthcare

services. Earthquakes can pose serious threats to water supply

by damaging underground water pipes – e.g. the 1994 magnitude

6.7 Northridge earthquake extensively damaged water supply and

transmission subsystems in Los Angeles, incurring $41 million in

repair costs [5]. Hence, designing strategies to fortify water in-

frastructure in order to improve resilience to earthquakes is an

important problem relevant to many cities across the USA and the

globe. Los Angeles is one of the cities at the forefront of proactively

prioritizing infrastructure resilience. In particular, fortifying the

Los Angeles water pipe network to prepare for an earthquake is

one of the primary actions the city is taking within the “Improved

Infrastructure” goal to make a more resilient Los Angeles [11]. The

Los Angeles Department of Water and Power (LADWP) serves

about 4 million people over a 465 square mile service area and

oversees 7,000 miles of pipes [7]. Due to the city’s layout and its

geographical conditions, after a major earthquake, subterranean

pipes could be severely damaged, causing losses of water service

in many areas. In 2013, LADWP began replacing some older pipes

with earthquake-resistant ductile iron pipes that are designed to

lock to keep pipes together and accommodate earthquake forces, so

that in the event of an earthquake, the pipes are less likely to be dam-

aged [21]. Placing seismically robust pipes at key locations helps to

improve continuous water delivery service and to reduce the work-

load to restore water in areas suffering from water shortage after

an earthquake. The City of Los Angeles and LADWP are planning

to form a system-wide Seismic-Resilient Pipe Network (SRPN) to

ensure sustained water delivery at critical locations after an earth-

quake occurs. In particular, delivering water to critical customers

responsible for public health and safety, e.g., hospitals, evacuation

centers, and fire departments, as well as customers providing com-

munity resilience services, e.g., schools and community centers, is

of utmost importance [6]. Earthquake risk zones also cover large

residential and commercial areas that are relatively isolated from

the critical customers targeted by the SRPN. Hence, it is also im-

portant to ensure that all residents are ‘covered’ by being within a

certain proximity to running water via SRPN. However, given the

complexity of the water network, the spatially varied seismic risk

and locations of critical customers, and the limited resources avail-

able for infrastructure upgrades, the planning problem becomes

complex. In this paper, we develop optimization approaches to

strategically identify where old pipes should be replaced by seis-

mic resilient pipes, respecting connectivity constraints for critical

customers and coverage constraints for residential areas.
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To address the challenges in planning the SRPN, we consider

an edge-weighted network design problem with multiple water

sources and connectivity constraints on nodes and edges. Our prob-

lem is closely related to the well-known Steiner tree problem [15],

where the goal is to find a tree with minimum cost on a given

graph that connects a set of so-called Steiner nodes. We refer to

our problem as edge-weighted Steiner Network Problem with Cov-

erage Constraints (SNP-CC): given an edge-weighted graph, a set

of Steiner nodes, a set of source nodes, and coverage constraints

represented by a collection of subsets of edges, find the set of edges

with minimum cost that connects each Steiner node to a source

node while satisfying the coverage constraints by including at least

one edge of each subset in the solution. We provide hardness and

inapproximability statements of the problems and present an effi-

cient flow-based mixed-integer linear program (MILP) encoding of

the problem with only a linear number of variables and constraints.

However, even if we can obtain the optimal plan for the SRPN, it

is not practical to complete the installation of earthquake-resistant

pipes in a short period due to the limited budget and resources,

the large scale of planned areas, and the difficulty of on-site con-

structions. Since Los Angeles started fortifying the water network

with earthquake-resistant pipes, a total of 13,600 feet (2.58 miles)

of them have been installed so far and they plan to upgrade about

14 miles of pipes in a three-year period starting in 2018 [21], in

contrast to the total length of 7,000 miles of pipe. In this situation,

it becomes an important task to effectively determine which part

of the optimal plan should be selected for each period of install-

ment. We introduce an optimization problem to plan for optimal

partial installments with the objective of satisfying as many of the

water provision requirements as soon as possible over the planning

time horizon within sequential budget allotments. We show that

this problem is strongly NP-Hard to solve and propose a dynamic

programming-based sequential planning algorithm.

In experiments, we test our proposed approaches on synthetic

water network graphs and a large-scale real-world water service

zone. We compare the performance with a myopic baseline and

demonstrate that our algorithms are able to handle instances with

almost 8,000 threatened pipes and provide high-quality water pipe

network designs as well as efficient installment plans.

1.1 Related Work
Research related to seismic resilience of water infrastructure in-

cludes designing simulation frameworks for risk and resilience

assessments [17, 23, 25] and optimizing post-earthquake water

service recovery [3, 20]. Our work is closely related to studies in

disaster response and pre-disaster planning, in which the goal is to

optimize road network resilience and accessibility [13, 14, 24, 26],

and facilitate emergency evacuation [10, 18, 22]. The line of research

in network design and optimization for real-world applications and

social good is also closely related. [9, 19] design wildlife conserva-

tion reserves that satisfy budget constraints and meet connectivity

requirements by solving Steiner tree or network problems. [13] for-

mulate the problem of maximizing road network resilience within

a fixed budget as a budget-prize-collecting Steiner forest problem.

The Group Steiner Tree problem is related to our network design

problem. In that problem, at least one node from each given group

of Steiner nodes should be included in the tree; while our design

objective is a general network, we have constraints on subsets of

edges as well as Steiner nodes. Theoretical results of hardness, as

well as deterministic [4], randomized [12], primal-dual based [8]

approximation algorithms for the Group Steiner Tree problem have

been established. However, no practical tool or technique has been

developed that we can borrow to solve our problem in large scales

and meet real-world optimality requirements.

2 STEINER NETWORK PROBLEMWITH
COVERAGE CONSTRAINTS

In this section, we first show how the SRPN planning problem can

be formulated as a network design problem. Then, we formally

define the edge-weighted Steiner Network Problem with Coverage

Constraints (SNP-CC), present its computational complexity, and

provide the MILP encoding to solve to problem.

To capture the SRPN planning problem as a network design

problem, we model the water network as an undirected graph

𝐺 = (𝑉 , 𝐸), where pipes in the water network are edges and the

intersections of pipes are nodes. The intersections of pipes are

determined by pump stations, valves, hydrants, storages and other

appurtenances in the network system that connect pipes. Each

pipe 𝑒 is associated with a non-negative replacement cost 𝑐 (𝑒) ≥ 0.

The set of water sources 𝑇 is a subset of 𝑉 , which corresponds to

pumps, storages or the hoses of trunk pipes. Let 𝐶 be the set of

critical customers. Given the location of each critical customer, the

customer is assigned to the closest node in the network from which

it can extract water; therefore, we can assume 𝐶 ⊆ 𝑉 . Denote by 𝑅

the set of housing areas. For each 𝑟 ∈ 𝑅, let 𝑆 (𝑟 ) ⊆ 𝐸 be the set of

pipes that are close enough to serve housing area 𝑟 .

Formally, we define SNP-CC as follow:

Given: an undirected graph𝐺 = (𝑉 , 𝐸), the sets of Steiner nodes
𝐶 , source nodes 𝑇 , coverage constraints 𝑅 with {𝑆 (𝑟 ) : 𝑟 ∈ 𝑅}, a
cost function on the edges 𝑐 : 𝐸 → R≥0 .

Find: a set of edges 𝐸 ′ ⊆ 𝐸 with minimum cost

∑
𝑒∈𝐸′ 𝑐 (𝑒), such

that all 𝑢 ∈ 𝐶 and 𝑟 ∈ 𝑅 are satisfied. We say that a Steiner node

𝑢 ∈ 𝐶 is satisfied, if in the induced subgraph of 𝐸 ′ 𝑢 is connected

to a source in 𝑇 . We say 𝑟 is satisfied, if there exists 𝑒 ∈ 𝐸 ′ ∩ 𝑆 (𝑟 )
connected to a source in 𝑇 in the induced subgraph of 𝐸 ′.

W.l.o.g., we assume 𝑇 ∩ 𝐶 = ∅ and 𝑇 ∩ {𝑢 : ∃(𝑢, 𝑣) ∈ 𝑆 (𝑟 )} =

∅, ∀𝑟 ∈ 𝑅.

2.1 Complexity Facts
Next, we present the following facts to show that this problem is

hard to solve exactly and approximately.

Fact 2.1. SNP-CC is NP-Hard to solve.

Fact 2.1 follows since even without coverage constraints (𝑅 =

∅), SNP-CC is equivalent to the Steiner tree problem, which is

known to be NP-Hard [16]. On the other hand, with only coverage

constraints, the problem can be reduced to the weighted set cover

problem, which is also a well-known NP-Hard problem [16].

Fact 2.2. SNP-CC cannot be approximated to a factor of 𝑜 (ln |𝑅 |)
in polynomial time.
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Fact 2.2 follows from the fact that the weighted set cover problem

with a set of elements 𝑅 cannot be approximated to a factor of

𝑜 (ln |𝑅 |). Consider an instance of the weighted set cover problem,

where a set of elements 𝑅 and a collection of subsets of 𝑅 are given.

The objective is to find the subsets with a minimum total weight

that cover all elements in 𝑅. We build a star graph with a center

node and edges representing each subset in the given collection.

The cost of edges corresponds to the weight of subsets. For each

element 𝑟 ∈ 𝑅, let 𝑆 (𝑟 ) be the set of edges corresponding to the

sets that contain this element. Let 𝑇 contains only the center node

and 𝐶 = ∅. If there exists a 𝑜 (ln |𝑅 |)-approximate algorithm for our

problem, then the set cover problem can be 𝑜 (ln |𝑅 |)-approximated

in polynomial time, leading to a contradiction.

2.2 MILP Formulation
In this section, we present our flow-based MILP formulation to

solve the problem. At first glance of this problem, satisfying the con-

straints on 𝐶 could be formulated using single commodity flow [9]

and satisfying the coverage constraints for each 𝑆 (𝑟 ) is equivalent
to including an edge in the solution in any cut that separates 𝑆 (𝑟 )
and 𝑇 . This cut-based formulation shares the same ideas as the cut-

based formulation for solving the Group Steiner Tree problem [12].

However, this formulation serves only for an expository purpose

for theoretical analyses in previous work, which is formidable to

use in practice since it consists of an exponential size of constraints.

Following the primal-dual relationship between flow and cuts, the

cut-based formulation can be translated to a flow-based formula-

tion where each individual 𝑟 ∈ 𝑅 requires a single commodity flow

formulation on the graph, resulting in a total of 𝑂 ( |𝑅 | ( |𝐸 | + |𝑉 |))
constraints and decision variables. Next, we present an efficient

flow-based formulation that requires only 𝑂 ( |𝑉 | + |𝐸 |) variables
with 𝑂 ( |𝑉 | + |𝐸 | + |𝑅 |) constraints.

We first transform the undirected graph 𝐺 to a directed graph

𝐺 = (𝑉 ∪{0}, 𝐸∪{(0, 𝑡) : 𝑡 ∈ 𝑇 }) by replacing each undirected edge
in 𝐸 with two directed edges (collected in set 𝐸) and adding a super

source 0 that connects to all 𝑡 ∈ 𝑇 . Let 𝛿+ (𝑣) and 𝛿− (𝑣) denote the
sets of outgoing and incoming edges of vertex 𝑣 in the transformed

graph 𝐺 . Our overall Flow-Based MILP (FB-MILP) encoding of the

problem is:

FB-MILP :

min

𝑥,𝑦,𝑧

∑
(𝑖, 𝑗) ∈𝐸

𝑐 (𝑖, 𝑗) (𝑥𝑖, 𝑗 + 𝑥 𝑗,𝑖 )∑
𝑒∈𝛿− (𝑣)

𝑦𝑒 = 1[𝑣∈𝐶 ] +
∑

𝑒∈𝛿+ (𝑣)
(𝑦𝑒 + 𝑥𝑒 ) ∀𝑣 ∈ 𝑉 (1)

𝑥𝑖, 𝑗 + 𝑥 𝑗,𝑖 ≤ 1 ∀(𝑖, 𝑗) ∈ 𝐸 (2)∑
(𝑖, 𝑗) ∈𝑆 (𝑟 )

𝑥𝑖, 𝑗 + 𝑥 𝑗,𝑖 ≥ 1 ∀𝑟 ∈ 𝑅 (3)

0 ≤ 𝑦𝑒 ≤ (|𝐸 | + |𝑉 |)𝑥𝑒 ∀𝑒 ∈ 𝐸 (4)

𝑧 +
∑
𝑡 ∈𝑇

𝑦0,𝑡 = |𝐸 | + |𝑉 | (5)∑
𝑡 ∈𝑇

𝑦0,𝑡 = |𝐶 | +
∑
𝑒∈𝐸

𝑥𝑒 (6)

𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸 (7)

For each 𝑒 ∈ 𝐸, we introduce a binary variable 𝑥𝑒 representing

whether 𝑒 is selected (𝑥𝑒 = 1) or not (𝑥𝑒 = 0) and a non-negative

continuous variable 𝑦𝑒 representing the number of units of flow on

edge 𝑒 . The main idea is that we take the nodes in 𝑇 as the sources

of the flow network and span the graph by sending flow out of

nodes in𝑇 . We let each edge 𝑒 consume 1 unit of flow if 𝑒 is used in

the solution, i.e., 𝑦𝑒 > 0 ⇒ 𝑥𝑒 = 1, which is ensured by Constraint

(4). Constraint (1) models the flow conservation. In Constraint (1),

a node will absorb 1 unit of flow if 𝑣 is a Steiner node. Constraint

(3) makes sure at least one edge from 𝑆 (𝑟 ) is selected. We give the

system a total of |𝐸 | + |𝑉 | units of flow since the edges and nodes

can consume at most that many units of flow. Constraint (5) states

that the residual flow 𝑧 plus the total flow injected to the sources

corresponds to the total flow, where 𝑦0,𝑡 (𝑡 ∈ 𝑇 ) represents flow

injected to source 𝑡 . Constraint (6) enforces that the flow consumed

by the system corresponds to the total flow injected to sources.

3 OPTIMAL PARTIAL NETWORK
INSTALLMENTS

Even if given the optimal plan to the SRPN planning problem, it

is not practical to complete the whole plan in a short time due to

the limited budget, the high cost of seismic materials, and the large

scale of the planning area. An alternative approach for the water

department is to split the plan into several installments, each given

a certain amount of budget. Therefore, the key question raised

given this setting is what pipes should be selected from the given

global plan for each installment to maximize efficiency over time?

In this section, we first formally define the optimization problem

for maximizing the efficiency of partial installments. Then, we

show that the problem is strongly NP-Hard to solve and develop an

efficient sequential algorithm for a computationally tractable case

of the problem, which is also a realistic case in practice.

Suppose that given an instance of SNP-CC, we have already

obtained the optimal solution represented by a set of edges 𝐸OPT.

We extend the cost function on edges to a set function for any

subsets of 𝐸, i.e., let 𝑐 (𝐸 ′) =
∑
𝑒∈𝐸′ 𝑐 (𝑒) ∀𝐸 ′ ⊆ 𝐸. Denote by 𝐵 =

𝑐 (𝐸OPT) the total cost of the plan. We want to split the total cost

𝐵 across 𝑛 installments. Suppose the time horizon is [0, 1] and the

𝑖-th installment is planned to be done at time
𝑖−1
𝑛 with a budget of

𝐵𝑖 allocated. Formally, we describe our problem as follow:

Given: an instance of SNP-CC and its optimal solution 𝐸OPT, 𝑛

time steps and (𝐵1, . . . , 𝐵𝑛) the budget allocation of the plan where∑𝑛
𝑖=1 𝐵𝑖 = 𝐵 = 𝑐 (𝐸OPT), 𝑈 : 2

𝐸OPT → R≥0 an utility function that

evaluates the efficiency of any partial plan.

Find: the installment plan (𝐸1, . . . , 𝐸𝑛) such that∪𝑖≤𝑛𝐸𝑖 = 𝐸OPT,

𝑐 (∪𝑗≤𝑖𝐸 𝑗 ) ≤ ∑
𝑗≤𝑖 𝐵𝑖 ∀𝑖 ≤ 𝑛, that maximizes the accumulated

efficiency over time

EFF =
1

𝑛

𝑛∑
𝑖=1

𝑈 (∪𝑗≤𝑖𝐸 𝑗 ) .

The objective EFF can be seen as the integral of the time-efficiency

function eff : [0, 1) → R≥0 defined as eff(𝑡) := 𝑈 (∪𝑗≤𝑖𝐸 𝑗 ) if
𝑡 ∈ [ 𝑖−1𝑛 , 𝑖𝑛 ) where 𝑖 ∈ [𝑛]. For an expository purpose, we define

𝑈 (𝐸 ′) to be the number of Steiner nodes satisfied by 𝐸 ′ in the in-

duced subgraph of 𝐸OPT in the rest of this paper. This definition of
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𝑈 (·) corresponds to the number of satisfied critical customers in the

SRPN. However, we will see that our algorithm could accommodate

a variety of utility functions, including any non-negative additive set
function 𝑈 (·) that quantifies efficiency in practice, e.g., the number

of leaky pipes fixed by the plan.

Next, we show the hardness of solving this problem in the fol-

lowing theorem.

Theorem 3.1. Finding the optimal installment plan is strongly
NP-Hard.

Proof. We will show a reduction from the 3-partition problem

(3PART), which is a strongly NP-Hard problem. In an instance of

3PART, we are given 3𝑛 positive integers 𝑎1, . . . , 𝑎3𝑛 and 𝐵0, such

that 𝐵0/4 < 𝑎𝑖 < 𝐵0/2 and

∑
3𝑛
𝑖=1 𝑎𝑖 = 𝑛𝐵0. 𝐵0 is polynomially

bounded, i.e., 𝐵0 ≤ poly(𝑛). We want to determine whether {𝑎𝑖 }
can be partitioned into 𝑛 groups, each having 3 numbers and a sum

of 𝐵0.

Given the instance, we construct a graph 𝐺 = (𝑉 , 𝐸) where
𝑉 = {𝑣𝑖 : 0 ≤ 𝑖 ≤ 3𝑛} and 𝐸 = {(𝑣0, 𝑣𝑖 ) : 1 ≤ 𝑖 ≤ 3𝑛}. The cost func-
tion on edges is given by 𝑐 (𝑣0, 𝑣𝑖 ) = 𝑎𝑖 . Let 𝐸OPT = 𝐸 and the utility

function is defined as𝑈 (𝐸) = 𝑐 (𝐸) for simplicity, which can be inter-

preted as having 𝑎𝑖 Steiner nodes attached to node 𝑣𝑖 with no extra

cost. The budget allocation is given by (𝐵1, . . . , 𝐵𝑛) = (𝐵0, . . . , 𝐵0) .
We want to show that the answer is true to the 3PART instance

iff. there exists a plan with EFF = (𝑛 + 1)𝐵0/2. Suppose there ex-
ists a 3-partition, then we let 𝐸𝑖 = {(𝑣0, 𝑣𝑥 ), (𝑣0, 𝑣𝑦), (𝑣0, 𝑣𝑧)} if

the 𝑖-th group in the partition is {𝑎𝑥 , 𝑎𝑦, 𝑎𝑧 }. Then we can eas-

ily verify the efficiency EFF = (𝑛 + 1)𝐵0/2. Conversely, since
EFF = (𝑛 + 1)𝐵0/2 where the equality holds iff.𝑈 (𝐸𝑖 ) = 𝐵0 ∀𝑖 ≤ 𝑛,

and 𝐵0/2 < 𝑎𝑖 < 𝐵0/4, we can infer that each 𝐸𝑖 contains exactly 3

edges {(𝑣0, 𝑣𝑥 ), (𝑣0, 𝑣𝑦), (𝑣0, 𝑣𝑧)} corresponding to (𝑎𝑥 , 𝑎𝑦, 𝑎𝑧) the
𝑖-th group in the 3-partition solution. Since 𝐵0 and 𝑎𝑖 are poly-

nomially bounded, solving the problem is NP-Hard in the strong

sense. □

To circumvent the computational hardness, we provide a se-

quential planning algorithm (SeqPlan), as shown in Algorithm 1.

In Algorithm 1, we first initialize 𝐸 ′ = ∅ and EFF = 0 (line 1) and

plan for time step 1, . . . , 𝑛 sequentially (line 2). Given the current

plan 𝐸 ′ = ∪𝑗<𝑖𝐸 𝑗 at each time step 𝑖 , we greedily choose 𝐸𝑖 that

leads to the largest increment in utility. In other words, we define

PartialPlan(𝐸 ′, 𝐵′) = arg max

𝐸′
𝑖
:𝑐 (𝐸′

𝑖
∪𝐸′) ≤𝐵′

𝑈 (𝐸 ′𝑖 ∪ 𝐸 ′)

and let 𝐸𝑖 = PartialPlan(𝐸 ′,∑𝑗≤𝑖 𝐵𝑖 ) (line 4). Then, we add 𝐸𝑖 to

the current plan (line 5) and update EFF (line 6).

Proposition 3.2. SeqPlan is optimal when 𝑛 = 2.

Next, we give the definition of non-overlapping coverage con-

straints and explore its property in Proposition 3.4.

Definition 3.3. (Non-overlapping coverage constraints) For any

𝑟 ∈ 𝑅, let 𝑉 (𝑟 ) = {𝑢 : ∃(𝑢, 𝑣) ∈ 𝑆 (𝑟 )} be the set of nodes in

the induced subgraph of 𝑆 (𝑟 ). We have non-overlapping coverage

constraints if 𝑉 (𝑟𝑖 ) ∩𝑉 (𝑟 𝑗 ) = ∅ ∀𝑟𝑖 , 𝑟 𝑗 ∈ 𝑅.

Proposition 3.4. Assuming non-overlapping coverage constraints,
there exists an optimal solution to SNP-CC that forms a forest, i.e.,

Algorithm 1 Sequential Planning Algorithm

1: 𝐸 ′ = ∅, EFF = 0

2: for 1 ≤ 𝑖 ≤ 𝑛 do
3: 𝐵′ =

∑𝑖
𝑗=1 𝐵 𝑗

4: 𝐸𝑖 = PartialPlan(𝐸 ′, 𝐵′)
5: 𝐸 ′ = 𝐸 ′ ∪ 𝐸𝑖
6: EFF = EFF + 1

𝑛𝑈 (𝐸 ′)
7: return (𝐸1, . . . , 𝐸𝑛), EFF

the induced graph of 𝐸OPT is a forest. Each component in the forest
contains exactly one node in 𝑇 .

In the rest of this section, we will focus on the case assuming

non-overlapping coverage constraints and show how we find the

optimal PartialPlan(𝐸 ′, 𝐵′) using dynamic programming (DP). For

the utility function, since 𝐸OPT forms a forest, we can let 𝑈 (𝑒) = 1

if the child node of 𝑒 is a Steiner node and𝑈 (𝑒) = 0 if not. To find

PartialPlan(𝐸 ′, 𝐵′), w.l.o.g. we assume that all edges in 𝐸 ′ are con-
nected to a source in 𝑇 ; otherwise, we could always discard those

edges. Then clearly, the additive set function𝑈 (𝐸 ′) = ∑
𝑒∈𝐸′ 𝑈 (𝑒)

gives the number of Steiner nodes satisfied by 𝐸 ′. Next, we contract
all the components connected by 𝐸 ′ in the induced graph of 𝐸OPT,

and the contracted graph forms a forest with each component con-

taining one source. We can transform the contracted graph into a

rooted tree by adding edges between a virtual root and nodes that

contain a source. The optimal solution can be computed using a

DP, which essentially solves a knapsack problem on a tree. Specif-

ically, assuming 𝑣 is already satisfied, we can compute OPT(𝑣, 𝑏)
defined to be the maximum utility can be achieved in the subtree

of 𝑣 , respecting the budget constraint 𝑏. Since the computation of

OPT(𝑣, 𝑏) is standard, we omit the details.

Remark 3.5. OPT(𝑣, 𝑏) can be computed in polynomial time using

DP since 𝑣 ≤ 𝑈 (𝐸OPT) ≤ |𝐸OPT | is polynomially bounded and dis-

cretized. This DP-based approach to find PartialPlan(𝐸 ′, 𝐵′) can be

extended to accommodate any non-negative addtitive set function

𝑈 (·) under the assumption of non-overlapping coverage constraints.

Even under this assumption, finding PartialPlan(𝐸 ′, 𝐵′) is NP-Hard
in general if 𝑈 (·) and 𝑐 (·) are non-integer. However, we can find

approximately optimum solutions by discretizing the utility on

edges.

4 EXPERIMENT
In experiments, we test our algorithms on synthetic water pipe

networks utilizing open-source road data and conduct a case study

on awater service zone in Los Angeles.We provide extensive results

to demonstrate the effectiveness of our proposed methods.

4.1 Data Description and Preprocessing
We apply our approaches on synthetic water pipe networks and

the Service Zone 1134 in Los Angeles, where we utilize three pieces

of data: i) road network data as a surrogate for water pipe net-

works from OpenStreetMap [1] for the synthetic setting and a GIS

representation of the water pipe network in Zone 1134, including

connectivity information, geographical data and basic features of

water pipes and joints; ii) geographical data of critical customers;



Enhancing Seismic Resilience of Water Pipe Networks COMPASS ’20, June 15–17, 2020, , Ecuador

Case i. Case ii. Case iii.

Figure 1: Visualized solutions to 4miles×4miles instances in Cases i, ii, and iii using roads as surrogates for water pipes. Pipes
chosen by our algorithms are highlighted using thick cyan lines. Red and blue pipes are threatened pipes crossing fault zones
and within liquefaction areas, respectively. Thin green pipes are non-threatened pipes. Safe customers, who are connected to
water sources via safe pipes and located near to a water source, are marked as black dots; threatened customers are marked as
pink dots. Water sources are not displayed in the figures.

Figure 2: Average solution gaps and runtime differences be-
tween FB-MILP and MyoPlan for different instance sizes on
synthetic water pipe networks derived from Table 1.

iii) GIS representations of fault zones and liquefaction areas in Los

Angeles. In the following, we provide a brief description of each

piece of data as well as how we extract input parameters to our

problem.

The connectivity data of the service zone describes how pipes

are linked together by pumps, valves, storages, hydrants, etc. In

addition, we have access to the latitude-longitude coordinates and

features (e.g., the age and diameter of pipes, the type of valves)

of all the elements in the network. From the data, we construct

the undirected graph representation𝐺 = (𝑉 , 𝐸) of the water pipe
network, with edges 𝐸 representing pipe segments and vertices

𝑉 representing coordinates of the joints. In our study area, pipes

with diameter no less than 24 inches are identified as trunk pipes

and are the main water sources of Zone 1134. Besides, we utilize

geospatial data made available by OpenStreetMap [1] for synthetic

representations of water pipe network in Los Angeles. We use the

road network to approximate the water pipe networks, where we

use the road segments as a surrogate for pipes location. We crop the

map using 𝐿 miles × 𝐿 miles bounding boxes at different locations

and use the obtained road networks within the boxes as substitutes

of 𝐺 .

The data of critical facilities provides latitude-longitude coordi-

nates of critical customers. We assign each customer to its closest

node in 𝑉 and collect those nodes as the set of critical customers 𝐶 .

To determine the set of 𝑅, we use a downsampling method. We

divide the bounding box of Zone 1134 into 12 × 14 grids, for each

grid, find the node closest to its center, and collect them as 𝑅. For

each 𝑟 ∈ 𝑅, 𝑆 (𝑟 ) is the set of edges within 3-hop neighborhood of 𝑟

in the graph𝐺 . For synthetic water pipe network graphs, we divide

the 𝐿 miles × 𝐿 miles region into

⌈
𝐿
0.7

⌉
×
⌈
𝐿
0.7

⌉
grids and apply the

same method. Ideally, we want to ensure that every node in the

graph is within a certain proximity to a water supply. We provide

justifications for our downsampling method in the following: as-

sume the grid size is 𝑎 × 𝑏, covering the set of edges in the center

of the grid guarantees the largest distance between any node and

the earthquake-resistant pipe closest to the node is not larger than
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2 x 2 4 x 4

Scale (16, 345, 214, 367) (44, 1529, 864, 1541)
Cost (Gap) Time EFF Cost (Gap) Time EFF

FB-MILP 2.71(0) 0 MyoPlan SeqPlan 7.43(0) 1.93 MyoPlan SeqPlan
MyoPlan(1.9) 3.00(10.9%) 0.5 14.0 13.5 8.44(13.6%) 17.4 34.0 34.8
MyoPlan(3.8) 3.27(21.0%) 0 16.0 16.0 7.74(4.17%) 32.4 36.5 37

i 6 x 6 8 x 8

Scale (87, 3371, 1943, 3427) (128, 5738, 3370, 5770)
Cost (Gap) Time EFF Cost (Gap) Time EFF

FB-MILP 16.19(0.78%) 90 MyoPlan SeqPlan 24.32(1.91%) 120 MyoPlan SeqPlan
MyoPlan(1.9) 16.75(4.27%) 101 60.0 62.7 26.02(9.04%) 145 87.43 90.2
MyoPlan(3.8) 18.37(14.4%) 97.7 66.8 69.2 26.19(9.79%) 133 91.57 95.43

2 x 2 4 x 4

Scale (14, 502, 378, 550) (34, 2021, 1335, 2087)
Cost (Gap) Time EFF Cost (Gap) Time EFF

FB-MILP 4.47(0) 0.3 MyoPlan SeqPlan 8.38(0) 1.36 MyoPlan SeqPlan
MyoPlan(1.9) 4.60(3.00%) 0.71 11.0 12.0 8.63(3.01%) 15.6 25.4 26.9
MyoPlan(3.8) 4.56(2.14%) 3.78 13.5 12.0 8.87(5.83%) 28.7 29 31.0

ii 6 x 6 8 x 8

Scale (57, 3944, 2367, 3912) (102, 6187, 3626, 6127)
Cost (Gap) Time EFF Cost (Gap) Time EFF

FB-MILP 13.29(0) 9.43 MyoPlan SeqPlan 21.93(0) 74.07 MyoPlan SeqPlan
MyoPlan(1.9) 14.42(8.58%) 47.5 41.13 44.63 23.88(8.89%) 119 72.38 76.46
MyoPlan(3.8) 14.31(7.65%) 42.9 44.75 47.75 22.83(4.10%) 147 74.17 78.67

2 x 2 4 x 4

Scale (20, 678, 401, 722) (55, 2473, 1590, 2679)
Cost (Gap) Time EFF Cost (Gap) Time EFF

FB-MILP 4.22(0) 0.6 MyoPlan SeqPlan 15.24(7.17%) 60 MyoPlan SeqPlan
MyoPlan(1.9) 5.06(20.0%) 24.2 16.33 17.33 16.61(16.8%) 68.5 36.77 38.77
MyoPlan(3.8) 5.63(33.4%) 30.2 19.0 19.5 17.15(20.6%) 75.0 42.0 44.0

iii 6 x 6 8 x 8

Scale (82, 4557, 2897, 4853) (99, 7485, 4680, 7861)
Cost Time EFF Cost Time EFF

FB-MILP 24.51(9.08%) 90 MyoPlan SeqPlan 36.99(10.05%) 120 MyoPlan SeqPlan
MyoPlan(1.9) 25.86(15.1%) 102 53.21 58.93 38.85(15.6%) 142 72.33 79.24
MyoPlan(3.8) 26.29(17.0%) 107 57.43 62.43 40.34(20.0%) 152 76.73 84.10

Table 1: Experiment results on synthetic water pipe networks in Cases i, ii and iii. The cost and budget are in miles, the
runtime is in minutes. The gaps are the optimality gaps. The problem scale is described by a tuple, where the four figures are
the numbers of threatened critical customers, threatened pipes, nodes and edges in the contracted graph.MyoPlanwith budget
𝐵0 is denoted by MyoPlan(𝐵0).

√
𝑎2 + 𝑏2/2 approximately. Equivalently, we can divide the region

into smaller grids of size
𝑎
2
× 𝑏

2
, and define 𝑅 to be the set of grids

and 𝑆 (𝑟 ) be all the pipes in the corresponding grid 𝑟 ∈ 𝑅. However,

the latter method leads to a larger number of coverage constraints

and larger sizes of 𝑆 (𝑟 ), which empirically leads to a 14% increase

in cost for our case study on Zone 1134. Our method guarantees

non-overlapping coverage constraints and 0.75-mile proximity to

water supply for all nodes empirically in all solutions generated by

baselines and our algorithms in experiments.

In GIS representations, the fault zones are represented by seg-

ments, and the liquefaction areas are represented by polygons. We

say that a pipe is threatened if it touches a liquefaction area or is

within 500 feet of a fault zone, which is very likely to be damaged

during an earthquake. All trunk pipes are assumed to be earthquake-

resistant and not considered as threatened pipes. The cost function

on edges represents the replacement cost of the corresponding

pipes. Assuming only threatened pipes will fail and need replace-

ment, we assign a cost equal to its lengths for each threatened pipe

and a zero cost for the others.

We provide statistics about Zone 1134 in Table 2a. The numbers

of nodes and pipes are the size of 𝑉 and 𝐸, respectively. Safe pipes

are guaranteed connection to water sources even if all threatened

pipes fail. Besides safe pipes and threatened pipes, there are 449

pipes connected to water sources via at least one threatened pipe

and will be isolated from the water supply in the worst case. In

addition, we count the number of non-covered nodes and threatened
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critical customers. Non-covered nodes are nodes not within 1 mile

proximity to any safe pipe or water source. Threatened critical

customers are those connected to water sources via at least one

threatened pipe and will lose direct water supply in the worst case.

4.1.1 Graph Contraction. Typically, the areas impacted by fault

zones and liquefaction areas form continuous regions on the map,

which correspond to components of threatened pipes with non-zero

cost in graph𝐺 . The rest of the graph consists of large components

of pipes with zero replacement cost. Given such component 𝐺𝐶 =

(𝑉𝐶 , 𝐸𝐶 ) where 𝑉𝐶 ⊆ 𝑉 and 𝐸𝐶 ⊆ 𝐸, to speed up computation, we

can contract 𝑉𝐶 and replace it with a new node 𝑣𝐶 that represents

component𝐺𝐶 . If𝐺𝐶 contains a source, i.e.,𝑉𝐶∩𝑇 ≠ ∅, then Steiner
nodes within𝑉𝐶 and coverage constraints that overlap with 𝐸𝐶 are

satisfied for free. All edges in 𝐸𝐶 can be removed since we have

contracted 𝑉𝐶 , and for all 𝑣 ∈ 𝑉 \ 𝑉𝐶 that has edges connecting

to nodes in 𝑉𝐶 , we replace them with an edge (𝑣, 𝑣𝐶 ) with cost

min(𝑣,𝑣′) ∈𝐸:𝑣′∈𝑉𝐶 𝑐 (𝑣, 𝑣 ′). Note that after graph contraction, not

only the number of nodes but also the number of edges with non-

zero cost reduces.

4.2 A Myopic Baseline
When given a specific limit of budget, decision-makers may plan

greedily based on what has been planned and installed so far, with-

out the guidance of the optimal global solution. Thus, we propose

a myopic planning algorithm (MyoPlan) that works as follow: i)
initially, 𝐸MyoPlan = ∅; ii) Given budget 𝐵0, extend 𝐸MyoPlan by

optimizing the number of newly-satisfied customers and housing

areas, such that the total cost of newly added edges does not exceed

𝐵0; iii) if not all customers and housing areas are satisfied, continue

to ii), otherwise, return 𝐸MyoPlan and its total cost. Explicitly, Step ii)

in MyoPlan can be computed using BC-MILP, a budget-constraint
version of the flow-based MILP. For simplicity, we provide the for-

mulation for the first iteration (i.e., 𝐸MyoPlan = ∅; we can contract

edges in 𝐸MyoPlan after each iteration and easily reapply the same

MILP on the contracted graph):

BC-MILP :

max

𝑥,𝑦,𝑧,𝑤

∑
𝑣∈𝐶

𝑤𝑣 +
∑
𝑟 ∈𝑅

𝑤𝑟

Constraint (2),(4),(5),(6),(7)∑
𝑒∈𝛿− (𝑣)

𝑦𝑒 =
∑

𝑒∈𝛿+ (𝑣)
(𝑦𝑒 + 𝑥𝑒 ) ∀𝑣 ∈ 𝑉∑

(𝑖, 𝑗) ∈𝐸
𝑐 (𝑖, 𝑗) (𝑥𝑖, 𝑗 + 𝑥 𝑗,𝑖 ) ≤ 𝐵0

𝑤𝑣 ≤
∑

𝑒∈𝛿+ (𝑣)
𝑥𝑒 ,𝑤𝑣 ∈ {0, 1} ∀𝑣 ∈ 𝐶

𝑤𝑟 ≤
∑

(𝑖, 𝑗) ∈𝑆 (𝑟 )
𝑥𝑖, 𝑗 + 𝑥 𝑗,𝑖 ,𝑤𝑟 ∈ {0, 1} ∀𝑟 ∈ 𝑅

In the formulation above, we introduce a set of new binary variables

𝑤𝑣 (𝑤𝑟 ) to represent whether customer 𝑣 ∈ 𝑉 (housing area 𝑟 ∈ 𝑅)

is satisfied.

4.3 Experiment Result on Synthetic Water Pipe
Networks

We run three sets of experiments (labeled as case i, ii and iii) on

each of the three locations we picked on the map of Los Ange-

les. For each location, we use its coordinate as the center to crop

the road networks from OpenStreetMap using 𝐿 × 𝐿 (𝐿 = 2, 4, 6, 8

miles) bounding boxes and approximate the water pipe network

𝐺 using the corresponding road network graph. For each 𝐿, we

run FB-MILP and MyoPlan (𝐵0 = 1.9, 3.8 miles) and compare their

runtime and solution quality. The cutoff time for FB-MILP to solve

a 𝐿 × 𝐿 instance is set to 15𝐿 minutes. For MyoPlan, we first es-
timate the time step needed as 𝑛′ = ⌈𝑐 (𝐸𝑂𝑃𝑇 )/𝐵0⌉ and set the

cutoff time to 18𝐿/𝑛′ minutes for each solve of BC-MILP. We also

run SeqPlan and compare the plan efficiency with MyoPlan. To
set up SeqPlan given 𝐵0 the budget for each installment, we plan

for 𝑛 installments over time horizon [0, 1] where 𝑛 is set to the

number of time steps required by MyoPlan, i.e., 𝑛 =

⌈
𝑐 (𝐸MyoPlan)

𝐵0

⌉
.

For the budget allocation, we simply set 𝐵𝑖 = 𝐵0 if 𝑖𝐵0 ≤ 𝑐 (𝐸OPT)
otherwise, 𝐵𝑖 = max{𝑐 (𝐸OPT) − (𝑖 − 1)𝐵0, 0}. Results are shown in

Table 1, and we highlight the solution gap and runtime difference

betweenMyoPlan and FB-MILP in Figure 2. FB-MILP outperforms

MyoPlan in all cases in terms of runtime and solution quality. The

EFF of MyoPlan can be calculated in linear time after MyoPlan
finds its solution. The EFF of SeqPlan takes less than two seconds

to compute in all instances. SeqPlan outperformsMyoPlan on most

instances, except on two 2 × 2 instances in case i and ii. Since we

only need to plan for two time steps in these cases,MyoPlan only

needs to outperform in the first step to beat SeqPlan. This excep-
tion does not contradict with Proposition 3.2 since MyoPlan is not

restricted to choose edges from 𝐸OPT. We visualize the solutions of

FB-MILP to the 4 miles×4 miles instances in Figure 1.

4.4 Case Study on Zone 1134
4.4.1 The Global Optimal Plan. Given the instance to SNP-CC
extracted from data, we run FB-MILP to compute the optimal solu-

tion. We also run MyoPlan with different budgets. In Table 2b, we

compare the solution quality and runtime withMyoPlan. FB-MILP
is able to find the optimal solution with cost 𝑐 (𝐸OPT) = 23.47 in

18.05 minutes. While inMyoPlan, we need to run BC-MILP several

times, and it takes BC-MILP a relatively long time to find the opti-

mal solution. Thus we set the cutoff time for each solve of BC-MILP
to 150 seconds for 𝐵0 = 1.9, 2.5 miles, 200 seconds for 𝐵0 = 3.2, 3.8

miles, and 250 seconds for 𝐵0 = 4.8 miles. We can see thatMyoPlan
with different budgets finds sub-optimal solutions that cost 3.03%

to 4.53% higher than 𝐸OPT.

4.4.2 The Optimal Plan for Partial Installment. Given the global

optimal plan 𝐸OPT, we investigate how we should plan for partial

installments.We show the efficiency of SeqPlan and compare it with

MyoPlan that plans without the guidance of the optimal solution.

The setup of SeqPlan is the same as in previous experiments. We

set 𝐵0 = 1.9, 2.5, 3.2, 3.8, 4.8 miles and show the solution quality in

Table 2𝑏. The EFF of SeqPlan takes less than 2 seconds to compute

in all instances. We can see that in all cases, SeqPlan that plans

upon the optimal solution dominatesMyoPlan in plan efficiency. In

Figure 3a and 3b, we show the utility curves for 𝐵0 = 3.1 miles and
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Pipes 34,462

Safe Pipes 25,609

Threatened Pipes 8,434

Nodes 31,674

Threatened Nodes 232

Critical Customers 298

Threatened Critical Customers 93

Nodes in Contracted Graph 7607

Edges in Contracted Graph 7844

(a) Statistics about Zone 1134.

Cost (Gap) Time/min EFF
FB-MILP 23.47 (0) 18.05 MyoPlan SeqPlan

MyoPlan(1.9) 24.37 (3.83%) 31.76 59.30 59.50
MyoPlan(2.5) 24.53(4.53%) 29.38 57.40 58.30
MyoPlan(3.2) 24.18 (3.03%) 23.35 57.38 58.00
MyoPlan(3.8) 24.22 (3.21%) 22.55 56.8 57.71
MyoPlan(4.8) 24.30 (3.53%) 20.88 57.80 60.16

(b) Solution quality of FB-MILP and MyoPlan, and plan efficiency of
SeqPlan and MyoPlan. The SeqPlan column is computed based on the
solution of FB-MILP using Algorithm 1.

Table 2: Statistics and results of Zone 1134.

(a) The utility curve for 𝐵0 = 3.2miles. (b) The utility curve for 𝐵0 = 4.8 miles.

Figure 3: Utility curves.

4.8 miles respectively. In both cases, MyoPlan achieves a higher

utility for the first time step. However, after the second time step,

both curves of MyoPlan are dominated by the curves of SeqPlan
and take two more time steps than SeqPlan to cover all customers.

5 CONCLUSION AND FUTUREWORK
In this paper, we addressed the problem of strategically planning

SRPN and introduce the Steiner Network Problem with Coverage

Constraints. To solve the network design problem, we provided an

efficient flow-based MILP. To maximize the efficiency of installing

the plan, we proposed a sequential planning algorithm to find the

optimal plan for partial network installments. In experiments, we

showed that our methods performed better than a myopic baseline

on both synthetic and real-world water pipe networks in terms of

solution quality and computation time. Importantly, our methods

demonstrated the potential to scale well to solve large practical

water pipe network design and planning problems, and the results

can serve as useful guidance for decision-makers when planning

SRPN.

To further evaluate the social impact of our work, we could

compare our solution to what has been done since the city started

fortifying the network and test it on main network failures related

to prior earthquakes. In our model, the benefits from replacing

pipes are only accrued when a critical customer is fully connected

to a source via seismic resilient pipes. For future work, we could

have stochastic costs on pipes and develop algorithms to minimize

the risk of a water pipe network failure.
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